Global dynamics of a multiscale malaria model with two strains

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jing Wang, Hongyong Zhao
{"title":"Global dynamics of a multiscale malaria model with two strains","authors":"Jing Wang,&nbsp;Hongyong Zhao","doi":"10.1016/j.aml.2024.109360","DOIUrl":null,"url":null,"abstract":"<div><div>This work examines the global dynamics of a two-strain malaria model proposed in a recent paper (Agusto, 2014). The global stability of the disease-free equilibrium when the basic reproduction number equals one, as well as the global stability of the resistant strain-only boundary equilibrium and coexistence equilibrium, have not been addressed in Agusto (2014). In fact, the model incorporates a factor that individuals infected with sensitive strain can transform into individuals infected with resistant strain, posing substantial challenges to global stability analysis. Notably, a key characteristic of this model is that the dynamics of humans and mosquitoes operate on different time scales. Consequently, we utilize the geometric singular perturbation theory to separate fast and slow dynamics, thereby obtaining global dynamics. Our results may offer deeper insights into the competitive exclusion and coexistence of two strains.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109360"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089396592400380X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work examines the global dynamics of a two-strain malaria model proposed in a recent paper (Agusto, 2014). The global stability of the disease-free equilibrium when the basic reproduction number equals one, as well as the global stability of the resistant strain-only boundary equilibrium and coexistence equilibrium, have not been addressed in Agusto (2014). In fact, the model incorporates a factor that individuals infected with sensitive strain can transform into individuals infected with resistant strain, posing substantial challenges to global stability analysis. Notably, a key characteristic of this model is that the dynamics of humans and mosquitoes operate on different time scales. Consequently, we utilize the geometric singular perturbation theory to separate fast and slow dynamics, thereby obtaining global dynamics. Our results may offer deeper insights into the competitive exclusion and coexistence of two strains.
有两种菌株的多尺度疟疾模型的全球动力学
这项工作研究了最近一篇论文(Agusto, 2014)中提出的双菌株疟疾模型的全局动态。Agusto (2014)中没有涉及基本繁殖数等于1时无疾病平衡的全局稳定性,以及仅有抗性菌株的边界平衡和共存平衡的全局稳定性。事实上,该模型包含了一个因素,即感染敏感菌株的个体可以转化为感染抗性菌株的个体,这给全局稳定性分析带来了巨大挑战。值得注意的是,该模型的一个关键特征是人类和蚊子的动力学在不同的时间尺度上运行。因此,我们利用几何奇异扰动理论来分离快速和慢速动力学,从而获得全局动力学。我们的研究结果可能会对两种菌株的竞争排斥和共存提供更深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信