Evaluation of elastic constants of M23C6 and M7C3 embedded in Fe-Cr-C alloys using in-situ XRD tensile test and self-consistent model

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hoon Lee , Xiang Liu , Kuan-Che Lan , Huan Yan , Xiao Pan , Xuan Zhang , Jun-sang Park , Meimei Li , Jonathan Almer , James Stubbins
{"title":"Evaluation of elastic constants of M23C6 and M7C3 embedded in Fe-Cr-C alloys using in-situ XRD tensile test and self-consistent model","authors":"Hoon Lee ,&nbsp;Xiang Liu ,&nbsp;Kuan-Che Lan ,&nbsp;Huan Yan ,&nbsp;Xiao Pan ,&nbsp;Xuan Zhang ,&nbsp;Jun-sang Park ,&nbsp;Meimei Li ,&nbsp;Jonathan Almer ,&nbsp;James Stubbins","doi":"10.1016/j.mtla.2024.102274","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the elastic properties of the model Fe-Cr-C alloys, specifically focusing on M<sub>23</sub>C<sub>6</sub> and M<sub>7</sub>C<sub>3</sub>. The study uses in-situ synchrotron X-ray data during tensile deformation to determine the individual elastic characteristics of the matrix and iron/chromium carbides. The experimental results obtained from in-situ X-ray diffraction (XRD) are compared to the elastic constants of carbides that were reported in previous studies and derived using density function theory (DFT). The appropriate elastic constants for M<sub>23</sub>C<sub>6</sub> and M<sub>7</sub>C<sub>3</sub> were selected based on the self-consistent code executing with reported elastic constants. The directional elastic modulus and Poisson's ratio of iron/chromium carbides are calculated, and the anisotropy of the elastic constants is evaluated using the XRD lattice deformations under loading. The elastic modulus of carbide varies with the volume fraction of carbide in the effective medium. The study finds that the hexagonal structure is more probable than orthorhombic structure for M<sub>7</sub>C<sub>3</sub> due to well-matched estimations of the directional elastic modulus and Poisson's ratio obtained from in-situ XRD data and the self-consistent calculations. In-situ XRD analysis of elastic behavior of each diffraction can be used to demonstrate the elastic constants of carbides and shows potential for obtaining precise elastic constants by integrating with self-consistent modeling and DFT.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102274"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the elastic properties of the model Fe-Cr-C alloys, specifically focusing on M23C6 and M7C3. The study uses in-situ synchrotron X-ray data during tensile deformation to determine the individual elastic characteristics of the matrix and iron/chromium carbides. The experimental results obtained from in-situ X-ray diffraction (XRD) are compared to the elastic constants of carbides that were reported in previous studies and derived using density function theory (DFT). The appropriate elastic constants for M23C6 and M7C3 were selected based on the self-consistent code executing with reported elastic constants. The directional elastic modulus and Poisson's ratio of iron/chromium carbides are calculated, and the anisotropy of the elastic constants is evaluated using the XRD lattice deformations under loading. The elastic modulus of carbide varies with the volume fraction of carbide in the effective medium. The study finds that the hexagonal structure is more probable than orthorhombic structure for M7C3 due to well-matched estimations of the directional elastic modulus and Poisson's ratio obtained from in-situ XRD data and the self-consistent calculations. In-situ XRD analysis of elastic behavior of each diffraction can be used to demonstrate the elastic constants of carbides and shows potential for obtaining precise elastic constants by integrating with self-consistent modeling and DFT.

Abstract Image

利用原位 XRD 拉伸试验和自洽模型评估嵌入 Fe-Cr-C 合金中的 M23C6 和 M7C3 的弹性常数
本文研究了铁-铬-碳合金模型的弹性特性,特别侧重于 M23C6 和 M7C3。研究利用拉伸变形过程中的原位同步辐射 X 射线数据来确定基体和铁/铬碳化物的个别弹性特性。通过原位 X 射线衍射 (XRD) 获得的实验结果与之前研究报告中使用密度函数理论 (DFT) 得出的碳化物弹性常数进行了比较。M23C6 和 M7C3 的适当弹性常数是根据自洽代码与报告的弹性常数的执行结果选出的。计算了铁/铬碳化物的定向弹性模量和泊松比,并利用加载下的 XRD 晶格变形评估了弹性常数的各向异性。碳化物的弹性模量随有效介质中碳化物的体积分数而变化。研究发现,由于从原位 XRD 数据和自洽计算中获得的方向弹性模量和泊松比估计值非常匹配,M7C3 的六方结构比正方结构更有可能。对每种衍射的弹性行为的原位 XRD 分析可用于证明碳化物的弹性常数,并显示了通过与自洽建模和 DFT 相结合获得精确弹性常数的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信