{"title":"Counting cycles in planar triangulations","authors":"On-Hei Solomon Lo , Carol T. Zamfirescu","doi":"10.1016/j.jctb.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the minimum number of cycles of specified lengths in planar <em>n</em>-vertex triangulations <em>G</em>. We prove that this number is <span><math><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for any cycle length at most <span><math><mn>3</mn><mo>+</mo><mi>max</mi><mo></mo><mo>{</mo><mrow><mi>rad</mi></mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>,</mo><mo>⌈</mo><msup><mrow><mo>(</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mrow><msub><mrow><mi>log</mi></mrow><mrow><mn>3</mn></mrow></msub><mo></mo><mn>2</mn></mrow></msup><mo>⌉</mo><mo>}</mo></math></span>, where <span><math><mrow><mi>rad</mi></mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> denotes the radius of the triangulation's dual, which is at least logarithmic but can be linear in the order of the triangulation. We also show that there exist planar hamiltonian <em>n</em>-vertex triangulations containing <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> many <em>k</em>-cycles for any <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mo>⌈</mo><mi>n</mi><mo>−</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>5</mn></mrow></mroot><mo>⌉</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. Furthermore, we prove that planar 4-connected <em>n</em>-vertex triangulations contain <span><math><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> many <em>k</em>-cycles for every <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>, and that, under certain additional conditions, they contain <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> <em>k</em>-cycles for many values of <em>k</em>, including <em>n</em>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"170 ","pages":"Pages 335-351"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000856","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the minimum number of cycles of specified lengths in planar n-vertex triangulations G. We prove that this number is for any cycle length at most , where denotes the radius of the triangulation's dual, which is at least logarithmic but can be linear in the order of the triangulation. We also show that there exist planar hamiltonian n-vertex triangulations containing many k-cycles for any . Furthermore, we prove that planar 4-connected n-vertex triangulations contain many k-cycles for every , and that, under certain additional conditions, they contain k-cycles for many values of k, including n.
我们研究了平面 n 顶点三角剖分 G 中指定长度循环的最小数目。我们证明,对于循环长度最多为 3+max{rad(G⁎),⌈(n-32)log32⌉} 的任意循环,该数目为 Ω(n),其中 rad(G⁎) 表示三角剖分的对偶半径,它至少是对数,但可以是三角剖分顺序的线性。我们还证明,对于任意 k∈{⌈n-n5⌉,...,n},存在包含 O(n) 个 k 循环的平面哈密顿 n 顶点三角剖分。此外,我们还证明了平面四连 n 顶点三角形在任何 k∈{3,...,n} 条件下都包含 Ω(n) 个 k 循环,而且在某些附加条件下,它们在包括 n 在内的许多 k 值上都包含 Ω(n2) 个 k 循环。
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.