A new matrix representation of the Maxwell equations based on the Riemann–Silberstein–Weber vector for a linear inhomogeneous medium

Q3 Physics and Astronomy
Sameen Ahmed Khan , Ramaswamy Jagannathan
{"title":"A new matrix representation of the Maxwell equations based on the Riemann–Silberstein–Weber vector for a linear inhomogeneous medium","authors":"Sameen Ahmed Khan ,&nbsp;Ramaswamy Jagannathan","doi":"10.1016/j.rio.2024.100747","DOIUrl":null,"url":null,"abstract":"<div><div>We derive a new eight dimensional matrix representation of the Maxwell equations for a linear homogeneous medium and extend it to the case of a linear inhomogneous medium. This derivation starts <em>ab initio</em> with the Maxwell equations and uses arguments based on the algebra of the Pauli matrices. This process leads automatically to the matrix representation based on the Riemann–Silberstein–Weber (RSW) vector. The new representation for the homogeneous medium is a direct sum of four Pauli matrix blocks. This aspect of the new representation should make it suitable for studying the propagation of electromagnetic waves in a linear inhomogeneous medium adopting the techniques of quantum mechanics treating the inhomogeneity as a perturbation. The new representation is used to rederive the Mukunda–Simon–Sudarshan matrix substitution rule for transition from the Helmholtz scalar wave optics to the Maxwell vector wave optics.</div></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950124001445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We derive a new eight dimensional matrix representation of the Maxwell equations for a linear homogeneous medium and extend it to the case of a linear inhomogneous medium. This derivation starts ab initio with the Maxwell equations and uses arguments based on the algebra of the Pauli matrices. This process leads automatically to the matrix representation based on the Riemann–Silberstein–Weber (RSW) vector. The new representation for the homogeneous medium is a direct sum of four Pauli matrix blocks. This aspect of the new representation should make it suitable for studying the propagation of electromagnetic waves in a linear inhomogeneous medium adopting the techniques of quantum mechanics treating the inhomogeneity as a perturbation. The new representation is used to rederive the Mukunda–Simon–Sudarshan matrix substitution rule for transition from the Helmholtz scalar wave optics to the Maxwell vector wave optics.
基于线性非均质介质的黎曼-希尔伯斯坦-韦伯向量的麦克斯韦方程新矩阵表示法
我们推导出线性均质介质麦克斯韦方程的新八维矩阵表示法,并将其扩展到线性非均质介质的情况。这一推导从麦克斯韦方程开始,使用基于保利矩阵代数的参数。这一过程自动引出基于黎曼-希尔伯斯坦-韦伯(RSW)向量的矩阵表示。均质介质的新表示是四个保利矩阵块的直接和。新表示法的这一特点使其适用于研究电磁波在线性非均质介质中的传播,采用量子力学技术将非均质性视为扰动。新表示法用于重新演绎穆孔达-西蒙-苏达山矩阵替换规则,以便从亥姆霍兹标量波光学过渡到麦克斯韦矢量波光学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Optics
Results in Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
2.50
自引率
0.00%
发文量
115
审稿时长
71 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信