Valorization of red grape pomace for sustainable food packaging: Development of pectin/kidney bean protein based biocomposite films enriched with grape pomace polyphenols
{"title":"Valorization of red grape pomace for sustainable food packaging: Development of pectin/kidney bean protein based biocomposite films enriched with grape pomace polyphenols","authors":"","doi":"10.1016/j.foodhyd.2024.110806","DOIUrl":null,"url":null,"abstract":"<div><div>Red grape pomace (GP), as an underutilized waste of wine and juice production units, was utilized as a valuable source of pectin (GPP) and extract (GPE). The co-extraction of GPP and GPE was performed using ultrasound-microwave assisted technique and the process factors were co-optimized using response surface methodology, which yielded 20.25% GPP and 21.51% GPE. The compositional characterization of the ingredients indicated a low-methoxyl galacturonic acid-rich structure for GPP and a wide range of phenolic compounds for GPE. The obtained GPP was then employed in the fabrication of a novel biocomposite film with red kidney bean protein isolate (KPI) and the prepared films were evaluated using physicochemical, hydration, barrier, mechanical, thermal and structural analysis. The results revealed that a 50/50 ratio of GPP/KPI improved hydration, barrier and mechanical properties, with water solubility of 14.96%, water vapor permeability of 1.86 × 10<sup>−10</sup> g/m.s.Pa, tensile strength (TS) of 36.20 MPa and elongation at break (EB) of 17.90%. The results from FTIR spectroscopy, X-ray diffraction and scanning electron microscope images suggested high compatibility between KPI and GPP and improved structural properties for the composite films. Furthermore, the thermogravimetric analysis presented improved thermal properties for GPP/KPI (50/50) films. Additionally, biodegradability monitoring of GPP/KPI films showed that they begin to deteriorate within eight days when exposed to vegetal compost. Finally, the incorporation of GPE in GPP/KPI (50/50) films in different ratios enhanced TS (up to 45.41 MPa), antioxidant and antibacterial properties, while negatively impacting EB and barrier properties.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":null,"pages":null},"PeriodicalIF":11.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24010804","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Red grape pomace (GP), as an underutilized waste of wine and juice production units, was utilized as a valuable source of pectin (GPP) and extract (GPE). The co-extraction of GPP and GPE was performed using ultrasound-microwave assisted technique and the process factors were co-optimized using response surface methodology, which yielded 20.25% GPP and 21.51% GPE. The compositional characterization of the ingredients indicated a low-methoxyl galacturonic acid-rich structure for GPP and a wide range of phenolic compounds for GPE. The obtained GPP was then employed in the fabrication of a novel biocomposite film with red kidney bean protein isolate (KPI) and the prepared films were evaluated using physicochemical, hydration, barrier, mechanical, thermal and structural analysis. The results revealed that a 50/50 ratio of GPP/KPI improved hydration, barrier and mechanical properties, with water solubility of 14.96%, water vapor permeability of 1.86 × 10−10 g/m.s.Pa, tensile strength (TS) of 36.20 MPa and elongation at break (EB) of 17.90%. The results from FTIR spectroscopy, X-ray diffraction and scanning electron microscope images suggested high compatibility between KPI and GPP and improved structural properties for the composite films. Furthermore, the thermogravimetric analysis presented improved thermal properties for GPP/KPI (50/50) films. Additionally, biodegradability monitoring of GPP/KPI films showed that they begin to deteriorate within eight days when exposed to vegetal compost. Finally, the incorporation of GPE in GPP/KPI (50/50) films in different ratios enhanced TS (up to 45.41 MPa), antioxidant and antibacterial properties, while negatively impacting EB and barrier properties.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.