Shixiang Zuo , Min Sun , Weifeng Gong , Tongtong Tang , Xuhua Ye , Wenjie Liu , Ngie Hing Wong , Rong Xu , Guihua Chen , Chao Yao , Haoguan Gui , Xiazhang Li
{"title":"Preparation of amino-functionalized CoAl-LDH/palygorskite hierarchical composites for CO2 capture","authors":"Shixiang Zuo , Min Sun , Weifeng Gong , Tongtong Tang , Xuhua Ye , Wenjie Liu , Ngie Hing Wong , Rong Xu , Guihua Chen , Chao Yao , Haoguan Gui , Xiazhang Li","doi":"10.1016/j.clay.2024.107625","DOIUrl":null,"url":null,"abstract":"<div><div>Layered double hydroxides (LDH) are regarded as an outstanding adsorbent with the ability to capture CO<sub>2</sub>. Nevertheless, the stacking and curling of CoAl-LDH significantly impact the CO<sub>2</sub> adsorption performance. In this study, CoAl-LDH were synthesized on a rigid palygorskite (Pal) framework to form a hierarchical CoAl-LDH/Pal composite, which effectively reduced the original particle size of CoAl-LDH and addressed the drawbacks. Subsequently, polyethylene imine (PEI) was impregnated onto the surface of CoAl-LDH/Pal to fabricate PEI/CoAl-LDH/Pal adsorbent, further improving the CO<sub>2</sub> capture performance. Finally, the mechanism of CO<sub>2</sub> adsorption was also elaborated. The PEI/CoAl-LDH/Pal demonstrated a higher equilibrium adsorption capacity and a longer breakthrough time for CO<sub>2</sub> capture, with the adsorption capacity reaching 158.8 mg/g and increasing by 8 times compared to that of CoAl-LDH/Pal. Herein, CO<sub>2</sub> was adsorbed on the surface of PEI/CoAl-LDH/Pal in the forms of bicarbonate and amino carboxylate. Additionally, PEI/CoAl-LDH/Pal exhibited excellent regeneration performance and maintained the adsorption capacity over 9 cycles, which is anticipated to be a promising candidate for CO<sub>2</sub> capture.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"262 ","pages":"Article 107625"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131724003739","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Layered double hydroxides (LDH) are regarded as an outstanding adsorbent with the ability to capture CO2. Nevertheless, the stacking and curling of CoAl-LDH significantly impact the CO2 adsorption performance. In this study, CoAl-LDH were synthesized on a rigid palygorskite (Pal) framework to form a hierarchical CoAl-LDH/Pal composite, which effectively reduced the original particle size of CoAl-LDH and addressed the drawbacks. Subsequently, polyethylene imine (PEI) was impregnated onto the surface of CoAl-LDH/Pal to fabricate PEI/CoAl-LDH/Pal adsorbent, further improving the CO2 capture performance. Finally, the mechanism of CO2 adsorption was also elaborated. The PEI/CoAl-LDH/Pal demonstrated a higher equilibrium adsorption capacity and a longer breakthrough time for CO2 capture, with the adsorption capacity reaching 158.8 mg/g and increasing by 8 times compared to that of CoAl-LDH/Pal. Herein, CO2 was adsorbed on the surface of PEI/CoAl-LDH/Pal in the forms of bicarbonate and amino carboxylate. Additionally, PEI/CoAl-LDH/Pal exhibited excellent regeneration performance and maintained the adsorption capacity over 9 cycles, which is anticipated to be a promising candidate for CO2 capture.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...