Zhuoyu Song , Kaiyin Xiao , Shijian Xiao , Kaifan Du , Zebei Mao , Tong Li , Bo Wang
{"title":"Effect of porosity on the tensile strength and Micromechanisms of laminated stitched C/C-SiC composites","authors":"Zhuoyu Song , Kaiyin Xiao , Shijian Xiao , Kaifan Du , Zebei Mao , Tong Li , Bo Wang","doi":"10.1016/j.matdes.2024.113429","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines how pore defects affect the tensile strength of laminated stitched carbon fiber reinforced carbon and silicon carbide (C/C-SiC) composites. Using computed tomography (CT) technology, internal characteristic parameters were obtained, and a representative volume cell contains pore (RVC-CP) defects was established. The homogenization method and strength estimation technique were applied to connect material properties from the microscopic to the mesoscopic scale. Progressive damage analysis of the representative volume cell (RVC) yielded tensile strength results within 2% of the average tensile test measurements, validating finite element models for strength prediction. The study found that pores create stress concentrations, leading to the failure of transverse and longitudinal fiber bundles, as well as the matrix. Additionally, it was observed that 8.9% pore content results in a 27.2% reduction in tensile strength compared to non-porous material. Based on these findings, empirical formulas for predicting tensile strength reduction due to pores are proposed. This paper presents a mesoscale computational model with pores that enhances the efficiency and accuracy of strength design for stitched C/C-SiC materials. In engineering, the model can be combined with non-destructive testing to quickly assess local strength reduction, offering valuable insights for designing C/C-SiC materials in aircraft and high-speed trains.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"247 ","pages":"Article 113429"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524008049","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines how pore defects affect the tensile strength of laminated stitched carbon fiber reinforced carbon and silicon carbide (C/C-SiC) composites. Using computed tomography (CT) technology, internal characteristic parameters were obtained, and a representative volume cell contains pore (RVC-CP) defects was established. The homogenization method and strength estimation technique were applied to connect material properties from the microscopic to the mesoscopic scale. Progressive damage analysis of the representative volume cell (RVC) yielded tensile strength results within 2% of the average tensile test measurements, validating finite element models for strength prediction. The study found that pores create stress concentrations, leading to the failure of transverse and longitudinal fiber bundles, as well as the matrix. Additionally, it was observed that 8.9% pore content results in a 27.2% reduction in tensile strength compared to non-porous material. Based on these findings, empirical formulas for predicting tensile strength reduction due to pores are proposed. This paper presents a mesoscale computational model with pores that enhances the efficiency and accuracy of strength design for stitched C/C-SiC materials. In engineering, the model can be combined with non-destructive testing to quickly assess local strength reduction, offering valuable insights for designing C/C-SiC materials in aircraft and high-speed trains.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.