{"title":"Resolving FLRW cosmology through effective equation of state in f(T) gravity","authors":"S.R. Bhoyar, Yash B. Ingole","doi":"10.1016/j.cjph.2024.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>This article explores the cosmological scenario of the universe in the context of the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> power law model, where <span><math><mi>T</mi></math></span> represents the torsion scalar. To obtain the deterministic solution of the field equations, we parameterized the effective equation-of-state (EoS) with two parameters <span><math><mi>m</mi></math></span> and <span><math><mi>k</mi></math></span> as suggested by A. Mukherjee in a flat FLRW environment. We impose constraints on the free parameters of the derived solution by utilizing MCMC analysis, assuming the <span><math><mrow><mi>C</mi><mi>C</mi><mo>,</mo><mi>P</mi><mi>a</mi><mi>n</mi><mi>t</mi><mi>h</mi><mi>e</mi><mi>o</mi><mi>n</mi><mo>+</mo><mi>S</mi><mi>H</mi><mn>0</mn><mi>E</mi><mi>S</mi></mrow></math></span>, and <span><math><mrow><mi>C</mi><mi>C</mi><mo>+</mo><mi>P</mi><mi>a</mi><mi>n</mi><mi>t</mi><mi>h</mi><mi>e</mi><mi>o</mi><mi>n</mi><mo>+</mo><mi>S</mi><mi>H</mi><mn>0</mn><mi>E</mi><mi>S</mi></mrow></math></span> as data samples. We explore the dynamics of cosmological parameters. The evolutionary profile of the deceleration parameter exhibits the transition to the accelerated phase. The effective EoS parameter indicates that the model remains in the quintessence era and gradually becomes the Einstein–de Sitter model. In addition, we explore the jerk, snap, and lerk parameters. Furthermore, the <span><math><mrow><mi>O</mi><mi>m</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> diagnostic shows that the model has a consistent positive slope across the entire evolution, but soon resembles the standard <span><math><mi>Λ</mi></math></span>CDM model. Finally, we conclude that the power law model of the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> gravity in the framework of the FLRW universe aligns more closely with the <span><math><mi>Λ</mi></math></span>CDM model for given observational data.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324004064","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article explores the cosmological scenario of the universe in the context of the power law model, where represents the torsion scalar. To obtain the deterministic solution of the field equations, we parameterized the effective equation-of-state (EoS) with two parameters and as suggested by A. Mukherjee in a flat FLRW environment. We impose constraints on the free parameters of the derived solution by utilizing MCMC analysis, assuming the , and as data samples. We explore the dynamics of cosmological parameters. The evolutionary profile of the deceleration parameter exhibits the transition to the accelerated phase. The effective EoS parameter indicates that the model remains in the quintessence era and gradually becomes the Einstein–de Sitter model. In addition, we explore the jerk, snap, and lerk parameters. Furthermore, the diagnostic shows that the model has a consistent positive slope across the entire evolution, but soon resembles the standard CDM model. Finally, we conclude that the power law model of the gravity in the framework of the FLRW universe aligns more closely with the CDM model for given observational data.
期刊介绍:
The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics.
The editors welcome manuscripts on:
-General Physics: Statistical and Quantum Mechanics, etc.-
Gravitation and Astrophysics-
Elementary Particles and Fields-
Nuclear Physics-
Atomic, Molecular, and Optical Physics-
Quantum Information and Quantum Computation-
Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks-
Plasma and Beam Physics-
Condensed Matter: Structure, etc.-
Condensed Matter: Electronic Properties, etc.-
Polymer, Soft Matter, Biological, and Interdisciplinary Physics.
CJP publishes regular research papers, feature articles and review papers.