{"title":"Self-healing Polymer-clay Nanocomposite Hydrogel-based All-in-one Stretchable Supercapacitor","authors":"","doi":"10.1016/j.jpowsour.2024.235746","DOIUrl":null,"url":null,"abstract":"<div><div>Stretchable supercapacitors are promising energy storage devices for the next generation of stretchable systems. However, having a stable and durable electrical energy output is challenging under various deformation conditions such as bending, twisting, and stretching. In this work, we report a novel all-in-one stretchable supercapacitor using a polymer-clay nanocomposite (PCN) hydrogel as the base for both the electrode and electrolyte layers. To prepare the hydrogel electrode, hybrid nanoparticles composed of multi-walled carbon nanotubes and manganese dioxide were synthesized and incorporated into the PCN hydrogel. The hydrogel electrode showed an elongation at break up to 6511 %, ultimate tensile strength of 29.2 kPa, and energy at break of 1.6 MJ m<sup>−3</sup>. The final hydrogel supercapacitor was assembled by sandwiching a PCN hydrogel electrolyte layer (containing a LiCl salt solution) between two layers of hydrogel electrode, realizing an areal capacitance of 45.6 mF cm<sup>−2</sup> at 0.5 mA cm<sup>−2</sup>. The device also showed self-healing ability.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324016987","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Stretchable supercapacitors are promising energy storage devices for the next generation of stretchable systems. However, having a stable and durable electrical energy output is challenging under various deformation conditions such as bending, twisting, and stretching. In this work, we report a novel all-in-one stretchable supercapacitor using a polymer-clay nanocomposite (PCN) hydrogel as the base for both the electrode and electrolyte layers. To prepare the hydrogel electrode, hybrid nanoparticles composed of multi-walled carbon nanotubes and manganese dioxide were synthesized and incorporated into the PCN hydrogel. The hydrogel electrode showed an elongation at break up to 6511 %, ultimate tensile strength of 29.2 kPa, and energy at break of 1.6 MJ m−3. The final hydrogel supercapacitor was assembled by sandwiching a PCN hydrogel electrolyte layer (containing a LiCl salt solution) between two layers of hydrogel electrode, realizing an areal capacitance of 45.6 mF cm−2 at 0.5 mA cm−2. The device also showed self-healing ability.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems