Process Controlled Polymorphic Phase Transformation in Crystalline Solid Dispersions: Impact of Temperature, Pressure, and Shear Stress

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Francheska Reyes Figueroa, José R. Hernández Espinell, Suresh Manivel, Lian Yu, Geoff G. Z. Zhang, Vilmalí López-Mejías* and Torsten Stelzer*, 
{"title":"Process Controlled Polymorphic Phase Transformation in Crystalline Solid Dispersions: Impact of Temperature, Pressure, and Shear Stress","authors":"Francheska Reyes Figueroa,&nbsp;José R. Hernández Espinell,&nbsp;Suresh Manivel,&nbsp;Lian Yu,&nbsp;Geoff G. Z. Zhang,&nbsp;Vilmalí López-Mejías* and Torsten Stelzer*,&nbsp;","doi":"10.1021/acs.cgd.4c0088010.1021/acs.cgd.4c00880","DOIUrl":null,"url":null,"abstract":"<p >Understanding the processing boundaries to generate crystalline solid dispersions (CSDs) containing metastable polymorphs remains an untapped challenge for the application of hot-melt extrusion (HME) and three-dimensional printing (3DP) as polymer-based formulation approaches. Hence, to successfully implement CSDs as alternative solid dosage formulations, the effect of critical process parameters (CPPs) on potential polymorphic phase transformations (PPTs) needs to be examined. This study extends the current knowledge on the influence of CPPs through temperature–pressure–shear simulated extrusion (TPSS-E) using the model system flufenamic acid (FFA) and poly(ethylene glycol) (PEG). The TPSS-E results revealed a significant reduction in the average PPT induction time (53%) compared to previous temperature–pressure simulated-extrusion (TPS-E) studies without shear stress. However, TPSS-E control experiments performed at 25 °C showed no PPT. This suggests that temperature is the most critical parameter in determining whether a PPT will occur, while pressure and shear stress significantly accelerate the PPT kinetics from the metastable (FFA III) to the stable form (FFA I) at elevated temperatures. These results demonstrate that for an enantiotropic system like FFA forms I and III (transition point = 42 °C), it is possible to control the metastable polymorph in CSDs during extrusion processes if the thermodynamic and kinetic boundaries, the CPPs, and material attributes of the drug-polymer system are well understood and controlled. The work presented here expands on the application of HME and 3DP as polymer-based formulation strategies for CSDs containing metastable polymorphs.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00880","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the processing boundaries to generate crystalline solid dispersions (CSDs) containing metastable polymorphs remains an untapped challenge for the application of hot-melt extrusion (HME) and three-dimensional printing (3DP) as polymer-based formulation approaches. Hence, to successfully implement CSDs as alternative solid dosage formulations, the effect of critical process parameters (CPPs) on potential polymorphic phase transformations (PPTs) needs to be examined. This study extends the current knowledge on the influence of CPPs through temperature–pressure–shear simulated extrusion (TPSS-E) using the model system flufenamic acid (FFA) and poly(ethylene glycol) (PEG). The TPSS-E results revealed a significant reduction in the average PPT induction time (53%) compared to previous temperature–pressure simulated-extrusion (TPS-E) studies without shear stress. However, TPSS-E control experiments performed at 25 °C showed no PPT. This suggests that temperature is the most critical parameter in determining whether a PPT will occur, while pressure and shear stress significantly accelerate the PPT kinetics from the metastable (FFA III) to the stable form (FFA I) at elevated temperatures. These results demonstrate that for an enantiotropic system like FFA forms I and III (transition point = 42 °C), it is possible to control the metastable polymorph in CSDs during extrusion processes if the thermodynamic and kinetic boundaries, the CPPs, and material attributes of the drug-polymer system are well understood and controlled. The work presented here expands on the application of HME and 3DP as polymer-based formulation strategies for CSDs containing metastable polymorphs.

Abstract Image

晶体固体分散体中的过程控制多晶相变:温度、压力和剪切应力的影响
对于热熔挤出(HME)和三维打印(3DP)作为聚合物制剂方法的应用而言,了解产生含有可迁移多晶体的结晶固体分散体(CSD)的加工边界仍然是一个尚未开发的挑战。因此,要成功地将 CSD 用作替代固体制剂,需要研究关键工艺参数 (CPP) 对潜在多晶体相变 (PPT) 的影响。本研究利用模型系统氟灭酸 (FFA) 和聚乙二醇 (PEG),通过温度-压力-剪切模拟挤压 (TPSS-E) 扩展了目前关于 CPPs 影响的知识。TPSS-E 的结果表明,与之前的无剪切应力温度-压力-剪切模拟挤压(TPS-E)研究相比,PPT 平均诱导时间显著缩短(53%)。然而,在 25 °C 温度下进行的 TPSS-E 对照实验却没有显示出 PPT。这表明,温度是决定是否会发生 PPT 的最关键参数,而压力和剪切应力会显著加速 PPT 动力学,使其在高温下从可蜕变形式(FFA III)转变为稳定形式(FFA I)。这些结果表明,对于像 FFA 形式 I 和 III(转变点 = 42 °C)这样的各向异性体系,如果能很好地理解和控制热力学和动力学边界、CPP 以及药物-聚合物体系的材料属性,就有可能在挤出过程中控制 CSD 中的可迁移多晶型。本文介绍的工作拓展了将 HME 和 3DP 作为基于聚合物的制剂策略在含有可迁移多晶体的 CSD 中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信