Shape Memory Polyurethane Foams With Tunable Mechanical Properties and Radiation Tolerance for Breast Repair and Reconstruction.

Kawun Chung, Xiaojuan Feng, Yuanzhang Jiang, Ka Li, Jianming Chen, Yanting Han, Lin Tan, Zhenggui Du
{"title":"Shape Memory Polyurethane Foams With Tunable Mechanical Properties and Radiation Tolerance for Breast Repair and Reconstruction.","authors":"Kawun Chung, Xiaojuan Feng, Yuanzhang Jiang, Ka Li, Jianming Chen, Yanting Han, Lin Tan, Zhenggui Du","doi":"10.1002/jbm.a.37821","DOIUrl":null,"url":null,"abstract":"<p><p>This study developed a shape memory polyurethane foam (SM-PUF) with tunable mechanical properties and exceptional radiation tolerance for potentially implanting tissue defects after mastectomy. The PUFs were synthesized via an in situ foaming strategy using water as a foaming agent, incorporating 4,4'-diphenylmethane diisocyanate (MDI) as the rigid segment and both polyoxytetramethylene glycol and polycaprolactone as the soft segment. The resultant PUFs possess an open-cell structure with a pore size of 30 ~ 800 μm, which achieves a compressive stress of 0.04 MPa under 70% compression strain and a tensile elongation of 667.9%. PUFs exhibit body temperature (37°C)-responsive softening and shape memory abilities, with recovery and fixation ratios reaching 88% and 98%, respectively. It was verified that PUFs can resist 40 Gy radiotherapy without changing their mechanical properties and biocompatibility. This study introduces an innovative approach to produce customizable foam for the reconstruction of implant prostheses for the breast.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbm.a.37821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study developed a shape memory polyurethane foam (SM-PUF) with tunable mechanical properties and exceptional radiation tolerance for potentially implanting tissue defects after mastectomy. The PUFs were synthesized via an in situ foaming strategy using water as a foaming agent, incorporating 4,4'-diphenylmethane diisocyanate (MDI) as the rigid segment and both polyoxytetramethylene glycol and polycaprolactone as the soft segment. The resultant PUFs possess an open-cell structure with a pore size of 30 ~ 800 μm, which achieves a compressive stress of 0.04 MPa under 70% compression strain and a tensile elongation of 667.9%. PUFs exhibit body temperature (37°C)-responsive softening and shape memory abilities, with recovery and fixation ratios reaching 88% and 98%, respectively. It was verified that PUFs can resist 40 Gy radiotherapy without changing their mechanical properties and biocompatibility. This study introduces an innovative approach to produce customizable foam for the reconstruction of implant prostheses for the breast.

用于乳房修复和重建的具有可调机械性能和辐射耐受性的形状记忆聚氨酯泡沫。
本研究开发了一种形状记忆聚氨酯泡沫(SM-PUF),它具有可调的机械性能和优异的耐辐射性,可用于乳房切除术后组织缺损的植入。聚氨酯泡沫是以水为发泡剂,以 4,4'-二苯基甲烷二异氰酸酯(MDI)为硬质段,以聚氧乙烯醚和聚己内酯为软质段,通过原位发泡策略合成的。制成的聚氨酯泡沫具有开孔结构,孔径为 30 ~ 800 μm,在 70% 压缩应变下可达到 0.04 MPa 的压缩应力,拉伸伸长率为 667.9%。PUF 具有体温(37°C)响应软化和形状记忆能力,其恢复率和固定率分别达到 88% 和 98%。研究证实,PUFs 可抵抗 40 Gy 放射治疗,而不会改变其机械性能和生物相容性。这项研究介绍了一种生产可定制泡沫的创新方法,可用于乳房植入假体的重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信