Liane Meneses, Dimitra Antonia Bagaki, Ana Roda, Alexandre Paiva and Ana Rita C. Duarte
{"title":"Development of enzymatically crosslinked natural deep eutectogels: versatile gels for enhanced drug delivery†","authors":"Liane Meneses, Dimitra Antonia Bagaki, Ana Roda, Alexandre Paiva and Ana Rita C. Duarte","doi":"10.1039/D4TB01672F","DOIUrl":null,"url":null,"abstract":"<p >Injectable hydrogels have been extensively studied due to their minimally invasive properties, ease of application, and void-filling properties. In this work, we tested the possibility to prepare a new type of gels, so called eutectogels, where water is replaced by a natural deep eutectic system (NADES), conferring it longer stability. Eutectogels based on betaine : glycerol 1 : 2, were prepared by enzymatic mediated crosslinking, using horseradish peroxidase (HRP) as catalyst and gelatine–phenol conjugated polymer. In comparison to hydrogels, that required higher enzyme concentration (15 U mL<small><sup>−1</sup></small>) to have gelation time under 2 minutes, the eutectogels were obtained using 10 and 5 U mL<small><sup>−1</sup></small> of HRP, with gelation times of 30 and 50 seconds, respectively. Finally, ketoprofen was loaded into the polymeric matrix, and release studies were conducted. The presence of NADES was essential for the formulation of the drug loaded gel, which was able to release up to 70% of the drug within 10 days, therefore, it was possible to conclude that these eutectogels work as matrix for the controlled delivery of ketoprofen in aqueous medium. The <em>in vitro</em> biological evaluation of the individual components of the eutectogel support no cytotoxic effect, an early indication of potential biocompatibility.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 48","pages":" 12567-12576"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01672f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Injectable hydrogels have been extensively studied due to their minimally invasive properties, ease of application, and void-filling properties. In this work, we tested the possibility to prepare a new type of gels, so called eutectogels, where water is replaced by a natural deep eutectic system (NADES), conferring it longer stability. Eutectogels based on betaine : glycerol 1 : 2, were prepared by enzymatic mediated crosslinking, using horseradish peroxidase (HRP) as catalyst and gelatine–phenol conjugated polymer. In comparison to hydrogels, that required higher enzyme concentration (15 U mL−1) to have gelation time under 2 minutes, the eutectogels were obtained using 10 and 5 U mL−1 of HRP, with gelation times of 30 and 50 seconds, respectively. Finally, ketoprofen was loaded into the polymeric matrix, and release studies were conducted. The presence of NADES was essential for the formulation of the drug loaded gel, which was able to release up to 70% of the drug within 10 days, therefore, it was possible to conclude that these eutectogels work as matrix for the controlled delivery of ketoprofen in aqueous medium. The in vitro biological evaluation of the individual components of the eutectogel support no cytotoxic effect, an early indication of potential biocompatibility.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices