{"title":"An innovative electrohydrodynamics-driven SERS platform for molecular stratification and treatment monitoring of lung cancer.","authors":"Tuotuo Zhang, Biao Dong, Huiling Wang, Shuai Zhang","doi":"10.1039/d4tb01434k","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of molecular diagnostics for lung cancer stratification and monitoring is essential for the strategic planning and prompt modification of treatments, aiming to enhance clinical results. To address this need, we suggest a nanocavity structure designed to sensitively analyze the protein signature on small extracellular vesicles (sEVs). This approach facilitates precise, noninvasive staging and treatment monitoring of lung cancer. The nanocavity is created through molecular recognition, involving the interaction of sEVs with nanobox-based core-shell surface-enhanced Raman scattering (SERS) barcodes and asymmetric, mirrorlike gold microelectrodes. By applying an alternating current to the gold microelectrodes, a nanofluidic shear force was generated, promoting the binding of sEVs and the effective assembly of the nanoboxes. This interaction induced a nanocavity between the nanobox and the gold microelectrode, which significantly amplified the electromagnetic field. This amplification enhanced Raman signals from four SERS barcodes simultaneously, allowing the generation of patient-specific molecular sEV signatures. When tested on a cohort of clinical samples (<i>n</i> = 76) using the nanocavity architecture, these patient-specific sEV molecular signatures accurately identified, stratified, and monitored lung cancer patients' treatment, demonstrating its potential for clinical application.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb01434k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of molecular diagnostics for lung cancer stratification and monitoring is essential for the strategic planning and prompt modification of treatments, aiming to enhance clinical results. To address this need, we suggest a nanocavity structure designed to sensitively analyze the protein signature on small extracellular vesicles (sEVs). This approach facilitates precise, noninvasive staging and treatment monitoring of lung cancer. The nanocavity is created through molecular recognition, involving the interaction of sEVs with nanobox-based core-shell surface-enhanced Raman scattering (SERS) barcodes and asymmetric, mirrorlike gold microelectrodes. By applying an alternating current to the gold microelectrodes, a nanofluidic shear force was generated, promoting the binding of sEVs and the effective assembly of the nanoboxes. This interaction induced a nanocavity between the nanobox and the gold microelectrode, which significantly amplified the electromagnetic field. This amplification enhanced Raman signals from four SERS barcodes simultaneously, allowing the generation of patient-specific molecular sEV signatures. When tested on a cohort of clinical samples (n = 76) using the nanocavity architecture, these patient-specific sEV molecular signatures accurately identified, stratified, and monitored lung cancer patients' treatment, demonstrating its potential for clinical application.
用于肺癌分层和监测的分子诊断技术的进步对于制定战略计划和及时调整治疗方法至关重要,其目的是提高临床效果。为了满足这一需求,我们提出了一种纳米腔体结构,旨在灵敏地分析细胞外小泡(sEVs)上的蛋白质特征。这种方法有助于对肺癌进行精确、无创的分期和治疗监测。这种纳米腔体是通过分子识别产生的,涉及 sEV 与基于纳米盒的核壳表面增强拉曼散射(SERS)条形码和非对称镜面金微电极之间的相互作用。通过在金微电极上施加交流电,产生了纳米流体剪切力,促进了 sEVs 的结合和纳米盒的有效组装。这种相互作用在纳米盒和金微电极之间形成了一个纳米腔,从而显著放大了电磁场。这种放大作用同时增强了四个 SERS 条形码的拉曼信号,从而生成了患者特异性分子 SEV 标识。在使用纳米腔体结构对一组临床样本(n = 76)进行测试时,这些患者特异性 sEV 分子特征准确地识别、分层和监测了肺癌患者的治疗,证明了其临床应用潜力。