Histone Lactylation-Driven GPD2 Mediates M2 Macrophage Polarization to Promote Malignant Transformation of Cervical Cancer Progression.

Chenlingzi Huang, Lujiadai Xue, Xinzi Lin, Yuan Shen, Xiaoyu Wang
{"title":"Histone Lactylation-Driven GPD2 Mediates M2 Macrophage Polarization to Promote Malignant Transformation of Cervical Cancer Progression.","authors":"Chenlingzi Huang, Lujiadai Xue, Xinzi Lin, Yuan Shen, Xiaoyu Wang","doi":"10.1089/dna.2024.0122","DOIUrl":null,"url":null,"abstract":"<p><p>Cervical cancer (CC) is the most common cancer in women. This study aims to explore the molecular mechanism of lactate secreted by CC cells modulating macrophage polarization in CC via histone lactylation. Normal cervical epithelium (NCE), low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), and cervical squamous cell carcinoma (CESC) were collected to assess H3K18la level and macrophage infiltration. Macrophages were incubated with SiHa cell-derived conditioned medium to detect M1 and M2 markers. NCE, HSIL, and CESC samples were used for ChIP-seq of H3K18la. Histone lactylation-dirven <i>GPD2</i> was knocked down in macrophages. Compared to NCE, H3K18la level and M2 macrophage abundance were increased in LSIL, HSIL, and CESC. Lactate secreted by CC cells upregulated H3K18la and M2 markers but downregulated M1 markers in macrophages. ChIP-seq revealed that upregulated pathways in HSIL vs. NCE and CESC vs. HSIL were commonly enriched in lipid metabolism. Notably, lactate upregulated H3K18la-modified <i>GPD2</i> expression in macrophages, and <i>GPD2</i> knockdown reversed lactate induction to M2 macrophages. Collectively, lactate secreted by CC cells upregulates <i>GPD2</i> via histone lactylation, thereby promoting M2 macrophage polarization in CC. This study provides new insights into the role of histone lactylation in macrophage polarization in the malignant transformation of CC.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/dna.2024.0122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cervical cancer (CC) is the most common cancer in women. This study aims to explore the molecular mechanism of lactate secreted by CC cells modulating macrophage polarization in CC via histone lactylation. Normal cervical epithelium (NCE), low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), and cervical squamous cell carcinoma (CESC) were collected to assess H3K18la level and macrophage infiltration. Macrophages were incubated with SiHa cell-derived conditioned medium to detect M1 and M2 markers. NCE, HSIL, and CESC samples were used for ChIP-seq of H3K18la. Histone lactylation-dirven GPD2 was knocked down in macrophages. Compared to NCE, H3K18la level and M2 macrophage abundance were increased in LSIL, HSIL, and CESC. Lactate secreted by CC cells upregulated H3K18la and M2 markers but downregulated M1 markers in macrophages. ChIP-seq revealed that upregulated pathways in HSIL vs. NCE and CESC vs. HSIL were commonly enriched in lipid metabolism. Notably, lactate upregulated H3K18la-modified GPD2 expression in macrophages, and GPD2 knockdown reversed lactate induction to M2 macrophages. Collectively, lactate secreted by CC cells upregulates GPD2 via histone lactylation, thereby promoting M2 macrophage polarization in CC. This study provides new insights into the role of histone lactylation in macrophage polarization in the malignant transformation of CC.

组蛋白乳化驱动的 GPD2 介导 M2 巨噬细胞极化,促进宫颈癌进展的恶性转化。
宫颈癌(CC)是女性最常见的癌症。本研究旨在探讨CC细胞分泌的乳酸通过组蛋白乳化作用调节CC中巨噬细胞极化的分子机制。研究人员采集了正常宫颈上皮(NCE)、低度鳞状上皮内病变(LSIL)、高度鳞状上皮内病变(HSIL)和宫颈鳞状细胞癌(CESC),以评估H3K18la水平和巨噬细胞浸润情况。用 SiHa 细胞衍生的条件培养基培养巨噬细胞,以检测 M1 和 M2 标记。NCE、HSIL和CESC样本用于H3K18la的ChIP-seq。在巨噬细胞中敲除组蛋白乳酰化抑制因子 GPD2。与 NCE 相比,LSIL、HSIL 和 CESC 中的 H3K18la 水平和 M2 巨噬细胞丰度均有所增加。CC细胞分泌的乳酸上调了巨噬细胞中的H3K18la和M2标记物,但下调了M1标记物。ChIP-seq 发现,HSIL 与 NCE 和 CESC 与 HSIL 相比,上调的通路通常富集在脂质代谢中。值得注意的是,乳酸上调了巨噬细胞中H3K18la修饰的GPD2的表达,而GPD2的敲除逆转了乳酸对M2巨噬细胞的诱导。总之,CC细胞分泌的乳酸通过组蛋白乳酰化上调GPD2,从而促进CC中M2巨噬细胞的极化。这项研究为组蛋白乳化在CC恶性转化过程中巨噬细胞极化的作用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信