Prediction of muscular-invasive bladder cancer using multi-view fusion self-distillation model based on 3D T2-Weighted images.

Biomedizinische Technik. Biomedical engineering Pub Date : 2024-11-06 Print Date: 2025-02-25 DOI:10.1515/bmt-2024-0333
Yuan Zou, Jie Yu, Lingkai Cai, Chunxiao Chen, Ruoyu Meng, Yueyue Xiao, Xue Fu, Xiao Yang, Peikun Liu, Qiang Lu
{"title":"Prediction of muscular-invasive bladder cancer using multi-view fusion self-distillation model based on 3D T2-Weighted images.","authors":"Yuan Zou, Jie Yu, Lingkai Cai, Chunxiao Chen, Ruoyu Meng, Yueyue Xiao, Xue Fu, Xiao Yang, Peikun Liu, Qiang Lu","doi":"10.1515/bmt-2024-0333","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Accurate preoperative differentiation between non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) is crucial for surgical decision-making in bladder cancer (BCa) patients. MIBC diagnosis relies on the Vesical Imaging-Reporting and Data System (VI-RADS) in clinical using multi-parametric MRI (mp-MRI). Given the absence of some sequences in practice, this study aims to optimize the existing T2-weighted imaging (T2WI) sequence to assess MIBC accurately.</p><p><strong>Methods: </strong>We analyzed T2WI images from 615 BCa patients and developed a multi-view fusion self-distillation (MVSD) model that integrates transverse and sagittal views to classify MIBC and NMIBC. This 3D image classification method leverages z-axis information from 3D MRI volume, combining information from adjacent slices for comprehensive features extraction. Multi-view fusion enhances global information by mutually complementing and constraining information from the transverse and sagittal planes. Self-distillation allows shallow classifiers to learn valuable knowledge from deep layers, boosting feature extraction capability of the backbone and achieving better classification performance.</p><p><strong>Results: </strong>Compared to the performance of MVSD with classical deep learning methods and the state-of-the-art MRI-based BCa classification approaches, the proposed MVSD model achieves the highest area under the curve (AUC) 0.927 and accuracy (Acc) 0.880, respectively. DeLong's test shows that the AUC of the MVSD has statistically significant differences with the VGG16, Densenet, ResNet50, and 3D residual network. Furthermore, the Acc of the MVSD model is higher than that of the two urologists.</p><p><strong>Conclusions: </strong>Our proposed MVSD model performs satisfactorily distinguishing between MIBC and NMIBC, indicating significant potential in facilitating preoperative BCa diagnosis for urologists.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":"37-47"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedizinische Technik. Biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmt-2024-0333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Accurate preoperative differentiation between non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) is crucial for surgical decision-making in bladder cancer (BCa) patients. MIBC diagnosis relies on the Vesical Imaging-Reporting and Data System (VI-RADS) in clinical using multi-parametric MRI (mp-MRI). Given the absence of some sequences in practice, this study aims to optimize the existing T2-weighted imaging (T2WI) sequence to assess MIBC accurately.

Methods: We analyzed T2WI images from 615 BCa patients and developed a multi-view fusion self-distillation (MVSD) model that integrates transverse and sagittal views to classify MIBC and NMIBC. This 3D image classification method leverages z-axis information from 3D MRI volume, combining information from adjacent slices for comprehensive features extraction. Multi-view fusion enhances global information by mutually complementing and constraining information from the transverse and sagittal planes. Self-distillation allows shallow classifiers to learn valuable knowledge from deep layers, boosting feature extraction capability of the backbone and achieving better classification performance.

Results: Compared to the performance of MVSD with classical deep learning methods and the state-of-the-art MRI-based BCa classification approaches, the proposed MVSD model achieves the highest area under the curve (AUC) 0.927 and accuracy (Acc) 0.880, respectively. DeLong's test shows that the AUC of the MVSD has statistically significant differences with the VGG16, Densenet, ResNet50, and 3D residual network. Furthermore, the Acc of the MVSD model is higher than that of the two urologists.

Conclusions: Our proposed MVSD model performs satisfactorily distinguishing between MIBC and NMIBC, indicating significant potential in facilitating preoperative BCa diagnosis for urologists.

利用基于三维 T2 加权图像的多视角融合自失真模型预测肌肉浸润性膀胱癌。
目的:术前准确区分非肌层浸润性膀胱癌(NMIBC)和肌层浸润性膀胱癌(MIBC)对膀胱癌(BCa)患者的手术决策至关重要。肌肉浸润性膀胱癌的诊断依赖于膀胱成像报告和数据系统(VI-RADS),临床上使用多参数磁共振成像(mp-MRI)。鉴于实践中缺乏某些序列,本研究旨在优化现有的 T2 加权成像(T2WI)序列,以准确评估 MIBC:方法:我们分析了 615 名 BCa 患者的 T2WI 图像,并开发了一种多视图融合自颤(MVDS)模型,该模型整合了横切面和矢状面,可对 MIBC 和 NMIBC 进行分类。这种三维图像分类方法利用三维核磁共振成像容积的 Z 轴信息,结合相邻切片的信息进行综合特征提取。多视图融合通过对横切面和矢状面信息的相互补充和制约,增强了全局信息。自扩散允许浅层分类器从深层学习有价值的知识,从而提高骨干层的特征提取能力,实现更好的分类性能:与经典深度学习方法的 MVSD 性能和最先进的基于 MRI 的 BCa 分类方法相比,所提出的 MVSD 模型分别获得了最高的曲线下面积(AUC)0.927 和准确率(Acc)0.880。DeLong 检验表明,MVSD 的 AUC 与 VGG16、Densenet、ResNet50 和三维残差网络有显著的统计学差异。此外,MVSD 模型的 Acc 值高于两位泌尿科医生的 Acc 值:结论:我们提出的 MVSD 模型在区分 MIBC 和 NMIBC 方面表现令人满意,这表明它在帮助泌尿科医生进行 BCa 术前诊断方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信