{"title":"Application of the first exit time stochastic model with self-repair mechanism to human mortality rates.","authors":"Noriyuki Shimoyama, Masayasu Hosonuma","doi":"10.1007/s00285-024-02150-4","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study is to construct a mortality model that reasonably explains survival curves and mortality rates in terms of the decline in biological function, which is the phenomenon of ageing. In this model, an individual organism is regarded as a collection of subsystems, and for each subsystem, the model defines human mortality by introducing positive self-repair mechanisms and stochastically generated negative external shocks. The probability density function of the time of death is derived explicitly, and the model parameters are estimated using life tables from Japan and the UK, which demonstrate the existence of multiple parameter sets that fit well with the observed data.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541399/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02150-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study is to construct a mortality model that reasonably explains survival curves and mortality rates in terms of the decline in biological function, which is the phenomenon of ageing. In this model, an individual organism is regarded as a collection of subsystems, and for each subsystem, the model defines human mortality by introducing positive self-repair mechanisms and stochastically generated negative external shocks. The probability density function of the time of death is derived explicitly, and the model parameters are estimated using life tables from Japan and the UK, which demonstrate the existence of multiple parameter sets that fit well with the observed data.