Evaluation of genetic diversity and genome-wide association studies of resistance to bacterial wilt disease in potato.

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES
Lilian A Okiro, Richard M Mulwa, Maurice E Oyoo, Pascal P Okwiri Ojwang, Susan A Otieno, Paola Gaiero, Guilherme da Silva Pereira, Thiago Mendes
{"title":"Evaluation of genetic diversity and genome-wide association studies of resistance to bacterial wilt disease in potato.","authors":"Lilian A Okiro, Richard M Mulwa, Maurice E Oyoo, Pascal P Okwiri Ojwang, Susan A Otieno, Paola Gaiero, Guilherme da Silva Pereira, Thiago Mendes","doi":"10.1094/PHYTO-06-24-0188-R","DOIUrl":null,"url":null,"abstract":"<p><p>The development of novel improved varieties adapted to unstable environmental conditions is possible through the genetic diversity of breeding materials. Potato is among the most important food crops worldwide, however, there are still significant hindrances to breeding gains attributed to its autotetraploid and highly heterozygous genome. Bacterial wilt caused by the <i>Ralstonia solanacearum</i> species complex (RSSC) is an important disease affecting potato among many economically important crops worldwide. No cultivated potato genotypes have shown a satisfactory level of resistance to bacterial wilt. Nevertheless, resistance can play a crucial role in effective integrated disease management. To understand the genetic landscape of bacterial wilt resistance in cultivated potato, we evaluated the diversity of 194 accessions from the International Potato Centre (CIP) using 9,250 single nucleotide polymorphisms (SNPs) and their associations to the response to bacterial wilt disease evaluated over two independent trials. Twenty-four accessions showed high resistance throughout both trials. Genetic diversity analysis revealed three major clusters whose subgroups were mostly represented by CIP clones derived from common parents. Genome-wide association analyses have shown six major hits: two on chromosome 8, and one on each chromosome 2, 4, 5, and 9. These results facilitate genetic dissection of bacterial wilt resistance and marker-enabled breeding in elite genotypes for potato breeding initiatives.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-06-24-0188-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The development of novel improved varieties adapted to unstable environmental conditions is possible through the genetic diversity of breeding materials. Potato is among the most important food crops worldwide, however, there are still significant hindrances to breeding gains attributed to its autotetraploid and highly heterozygous genome. Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is an important disease affecting potato among many economically important crops worldwide. No cultivated potato genotypes have shown a satisfactory level of resistance to bacterial wilt. Nevertheless, resistance can play a crucial role in effective integrated disease management. To understand the genetic landscape of bacterial wilt resistance in cultivated potato, we evaluated the diversity of 194 accessions from the International Potato Centre (CIP) using 9,250 single nucleotide polymorphisms (SNPs) and their associations to the response to bacterial wilt disease evaluated over two independent trials. Twenty-four accessions showed high resistance throughout both trials. Genetic diversity analysis revealed three major clusters whose subgroups were mostly represented by CIP clones derived from common parents. Genome-wide association analyses have shown six major hits: two on chromosome 8, and one on each chromosome 2, 4, 5, and 9. These results facilitate genetic dissection of bacterial wilt resistance and marker-enabled breeding in elite genotypes for potato breeding initiatives.

马铃薯细菌性萎蔫病抗性的遗传多样性评估和全基因组关联研究。
通过育种材料的遗传多样性,可以培育出适应不稳定环境条件的改良新品种。马铃薯是世界上最重要的粮食作物之一,然而,由于其自交四倍体和高度杂合的基因组,育种成果的获得仍面临巨大障碍。由茄属拉氏菌(Ralstonia solanacearum)复合菌种(RSSC)引起的细菌枯萎病是影响马铃薯的一种重要病害,也是影响全球许多重要经济作物的一种重要病害。目前还没有栽培的马铃薯基因型对细菌性枯萎病表现出令人满意的抗性。然而,抗性可在有效的病害综合防治中发挥关键作用。为了了解栽培马铃薯抗细菌性萎蔫病的遗传情况,我们利用 9,250 个单核苷酸多态性(SNPs)评估了国际马铃薯中心(CIP)194 个品种的多样性及其与两个独立试验中评估的细菌性萎蔫病反应的相关性。在这两项试验中,有 24 个品种表现出很强的抗性。遗传多样性分析揭示了三个主要群组,其亚群主要由来自共同亲本的 CIP 克隆所代表。全基因组关联分析显示了六个主要的基因突变:两个在 8 号染色体上,2、4、5 和 9 号染色体上各有一个。这些结果有助于对细菌枯萎病的抗性进行遗传分析,并在马铃薯育种计划的精英基因型中进行标记辅助育种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信