Noninvasive Assessment of Cardiopulmonary Hemodynamics Using Cardiovascular Magnetic Resonance Pulmonary Transit Time.

IF 3.3 Q2 ENGINEERING, BIOMEDICAL
International Journal of Biomedical Imaging Pub Date : 2024-10-28 eCollection Date: 2024-01-01 DOI:10.1155/2024/5691909
Martin Segeroth, David Jean Winkel, Beat A Kaufmann, Ivo Strebel, Shan Yang, Joshy Cyriac, Jakob Wasserthal, Michael Bach, Pedro Lopez-Ayala, Alexander Sauter, Christian Mueller, Jens Bremerich, Michael Zellweger, Philip Haaf
{"title":"Noninvasive Assessment of Cardiopulmonary Hemodynamics Using Cardiovascular Magnetic Resonance Pulmonary Transit Time.","authors":"Martin Segeroth, David Jean Winkel, Beat A Kaufmann, Ivo Strebel, Shan Yang, Joshy Cyriac, Jakob Wasserthal, Michael Bach, Pedro Lopez-Ayala, Alexander Sauter, Christian Mueller, Jens Bremerich, Michael Zellweger, Philip Haaf","doi":"10.1155/2024/5691909","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Pulmonary transit time (PTT) is the time it takes blood to pass from the right ventricle to the left ventricle via the pulmonary circulation, making it a potentially useful marker for heart failure. We assessed the association of PTT with diastolic dysfunction (DD) and mitral valve regurgitation (MVR). <b>Methods:</b> We evaluated routine stress perfusion cardiovascular magnetic resonance (CMR) scans in 83 patients including assessment of PTT with simultaneously available echocardiographic assessment. Relevant DD and MVR were defined as exceeding Grade I (impaired relaxation and mild regurgitation). PTT was determined from CMR rest perfusion scans. Normalized PTT (nPTT), adjusted for heart rate, was calculated using Bazett's formula. <b>Results:</b> Higher PTT and nPTT values were associated with higher grade DD and MVR. The diagnostic accuracy for the prediction of DD as quantified by the area under the ROC curve (AUC) was 0.73 (CI 0.61-0.85; <i>p</i> = 0.001) for PTT and 0.81 (CI 0.71-0.89; <i>p</i> < 0.001) for nPTT. For MVR, the diagnostic performance amounted to an AUC of 0.80 (CI 0.68-0.92; <i>p</i> < 0.001) for PTT and 0.78 (CI 0.65-0.90; <i>p</i> < 0.001) for nPTT. PTT values < 8 s rule out the presence of DD and MVR with a probability of 70% (negative predictive value 78%). <b>Conclusion:</b> CMR-derived PTT is a readily obtainable hemodynamic parameter. It is elevated in patients with DD and moderate to severe MVR. Low PTT values make the presence of DD and MVR-as assessed by echocardiography-unlikely.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535428/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/5691909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Pulmonary transit time (PTT) is the time it takes blood to pass from the right ventricle to the left ventricle via the pulmonary circulation, making it a potentially useful marker for heart failure. We assessed the association of PTT with diastolic dysfunction (DD) and mitral valve regurgitation (MVR). Methods: We evaluated routine stress perfusion cardiovascular magnetic resonance (CMR) scans in 83 patients including assessment of PTT with simultaneously available echocardiographic assessment. Relevant DD and MVR were defined as exceeding Grade I (impaired relaxation and mild regurgitation). PTT was determined from CMR rest perfusion scans. Normalized PTT (nPTT), adjusted for heart rate, was calculated using Bazett's formula. Results: Higher PTT and nPTT values were associated with higher grade DD and MVR. The diagnostic accuracy for the prediction of DD as quantified by the area under the ROC curve (AUC) was 0.73 (CI 0.61-0.85; p = 0.001) for PTT and 0.81 (CI 0.71-0.89; p < 0.001) for nPTT. For MVR, the diagnostic performance amounted to an AUC of 0.80 (CI 0.68-0.92; p < 0.001) for PTT and 0.78 (CI 0.65-0.90; p < 0.001) for nPTT. PTT values < 8 s rule out the presence of DD and MVR with a probability of 70% (negative predictive value 78%). Conclusion: CMR-derived PTT is a readily obtainable hemodynamic parameter. It is elevated in patients with DD and moderate to severe MVR. Low PTT values make the presence of DD and MVR-as assessed by echocardiography-unlikely.

利用心血管磁共振肺转运时间对心肺血流动力学进行无创评估
简介肺循环转运时间(PTT)是指血液从右心室经肺循环进入左心室所需的时间,因此它可能是心力衰竭的一个有用标记。我们评估了 PTT 与舒张功能障碍(DD)和二尖瓣反流(MVR)的关系。方法我们评估了 83 例患者的常规压力灌注心血管磁共振(CMR)扫描,包括 PTT 评估和同时进行的超声心动图评估。相关的 DD 和 MVR 被定义为超过 I 级(松弛受损和轻度反流)。根据 CMR 静息灌注扫描确定 PTT。使用巴泽特公式计算归一化 PTT(nPTT),并根据心率进行调整。结果较高的 PTT 和 nPTT 值与较高级别的 DD 和 MVR 相关。以 ROC 曲线下面积(AUC)量化的 DD 预测诊断准确率为:PTT 0.73(CI 0.61-0.85;p = 0.001),nPTT 0.81(CI 0.71-0.89;p < 0.001)。对于 MVR,PTT 的 AUC 为 0.80 (CI 0.68-0.92; p < 0.001),nPTT 为 0.78 (CI 0.65-0.90; p < 0.001)。PTT 值小于 8 秒可排除 DD 和 MVR 的可能性为 70%(阴性预测值为 78%)。结论CMR 导出的 PTT 是一个易于获得的血液动力学参数。DD 和中重度 MVR 患者的 PTT 值会升高。低 PTT 值使得超声心动图评估的 DD 和 MVR 不可能存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
11
审稿时长
20 weeks
期刊介绍: The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to): Digital radiography and tomosynthesis X-ray computed tomography (CT) Magnetic resonance imaging (MRI) Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Ultrasound imaging Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography Neutron imaging for biomedical applications Magnetic and optical spectroscopy, and optical biopsy Optical, electron, scanning tunneling/atomic force microscopy Small animal imaging Functional, cellular, and molecular imaging Imaging assays for screening and molecular analysis Microarray image analysis and bioinformatics Emerging biomedical imaging techniques Imaging modality fusion Biomedical imaging instrumentation Biomedical image processing, pattern recognition, and analysis Biomedical image visualization, compression, transmission, and storage Imaging and modeling related to systems biology and systems biomedicine Applied mathematics, applied physics, and chemistry related to biomedical imaging Grid-enabling technology for biomedical imaging and informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信