Monitoring bay-scale ecosystem changes in bivalve aquaculture embayments using flow cytometry.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2024-11-05 eCollection Date: 2024-01-01 DOI:10.1371/journal.pone.0313271
Hannah Sharpe, Thomas Guyondet, Jeffrey Barrell, Claude Belzile, Christopher W McKindsey, Flora Salvo, Anaïs Lacoursière-Roussel
{"title":"Monitoring bay-scale ecosystem changes in bivalve aquaculture embayments using flow cytometry.","authors":"Hannah Sharpe, Thomas Guyondet, Jeffrey Barrell, Claude Belzile, Christopher W McKindsey, Flora Salvo, Anaïs Lacoursière-Roussel","doi":"10.1371/journal.pone.0313271","DOIUrl":null,"url":null,"abstract":"<p><p>Bay-scale empirical evaluations of how bivalve aquaculture alters plankton composition, and subsequently ecological functioning and higher trophic levels, are lacking. Temporal, inter- and within-bay variation in hydrodynamic, environmental, and aquaculture pressure complicate plankton monitoring design to detect bay-scale changes and inform aquaculture ecosystem interactions. Here, we used flow cytometry to investigate spatio-temporal variations in bacteria and phytoplankton (< 20 μm) composition in four bivalve aquaculture embayments. We observed higher abundances of bacteria and phytoplankton in shallow embayments that experienced greater freshwater and nutrient inputs. Depleted nutrient conditions may have led to the dominance of picophytoplankton cells, which showed strong within-bay variation as a function of riverine vs marine influence and nutrient availability. Although environmental forcings appeared to be a strong driver of spatio-temporal trends, results showed that bivalve aquaculture may reduce near-lease phytoplankton abundance and favor bacterial growth. We discuss confounding environmental factors that must be accounted for when interpreting aquaculture effects such as grazing, benthic-pelagic coupling processes, and microbial biogeochemical cycling. Conclusions provide guidance on sampling considerations using flow cytometry in aquaculture sites based on embayment geomorphology and hydrodynamics.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537403/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0313271","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bay-scale empirical evaluations of how bivalve aquaculture alters plankton composition, and subsequently ecological functioning and higher trophic levels, are lacking. Temporal, inter- and within-bay variation in hydrodynamic, environmental, and aquaculture pressure complicate plankton monitoring design to detect bay-scale changes and inform aquaculture ecosystem interactions. Here, we used flow cytometry to investigate spatio-temporal variations in bacteria and phytoplankton (< 20 μm) composition in four bivalve aquaculture embayments. We observed higher abundances of bacteria and phytoplankton in shallow embayments that experienced greater freshwater and nutrient inputs. Depleted nutrient conditions may have led to the dominance of picophytoplankton cells, which showed strong within-bay variation as a function of riverine vs marine influence and nutrient availability. Although environmental forcings appeared to be a strong driver of spatio-temporal trends, results showed that bivalve aquaculture may reduce near-lease phytoplankton abundance and favor bacterial growth. We discuss confounding environmental factors that must be accounted for when interpreting aquaculture effects such as grazing, benthic-pelagic coupling processes, and microbial biogeochemical cycling. Conclusions provide guidance on sampling considerations using flow cytometry in aquaculture sites based on embayment geomorphology and hydrodynamics.

利用流式细胞仪监测双壳贝类水产养殖海湾生态系统的变化。
对于双壳贝类水产养殖如何改变浮游生物组成,进而改变生态功能和较高营养级,目前还缺乏海湾尺度的经验评估。水动力、环境和水产养殖压力在时间、海湾间和海湾内的变化使浮游生物监测设计变得复杂,难以检测海湾尺度的变化并为水产养殖生态系统的相互作用提供信息。在这里,我们使用流式细胞仪研究了四个双壳类水产养殖海湾中细菌和浮游植物(< 20 μm)组成的时空变化。我们观察到,在淡水和营养物质输入较多的浅水区,细菌和浮游植物的丰度较高。营养物质匮乏的条件可能会导致浮游植物细胞占主导地位,而河水与海洋的影响以及营养物质的可用性又会导致海湾内浮游植物细胞的强烈变化。尽管环境影响似乎是时空趋势的主要驱动因素,但结果表明,双壳类水产养殖可能会降低近租浮游植物的丰度,有利于细菌的生长。我们讨论了在解释水产养殖效应时必须考虑的混杂环境因素,如放牧、底栖-浮游耦合过程和微生物生物地球化学循环。结论为根据河口地貌和水动力在水产养殖地点使用流式细胞仪进行取样的注意事项提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信