MoS2 quantum dot-decorated CNT networks as a sulfur host for enhanced electrochemical kinetics in advanced lithium-sulfur batteries.

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Meng Wei, Hanqing Lu, Zhen Wang, Baowen Lu, Pengtao Wang, Xinxin Zhang, Bingjie Feng, Yingjie Xie, Tao Zhang, Guanghui Liu, Song Xu
{"title":"MoS<sub>2</sub> quantum dot-decorated CNT networks as a sulfur host for enhanced electrochemical kinetics in advanced lithium-sulfur batteries.","authors":"Meng Wei, Hanqing Lu, Zhen Wang, Baowen Lu, Pengtao Wang, Xinxin Zhang, Bingjie Feng, Yingjie Xie, Tao Zhang, Guanghui Liu, Song Xu","doi":"10.1039/d4na00068d","DOIUrl":null,"url":null,"abstract":"<p><p>The slow redox kinetics and shuttle effect of polysulfides severely obstruct the further development of lithium-sulfur (Li-S) batteries. Constructing sulfur host materials with high conductivity and catalytic capability is well acknowledged as an effective strategy for promoting polysulfide conversion. Herein, a well-designed MoS<sub>2</sub> QDs-CNTs/S@Ni(OH)<sub>2</sub> (labeled as MoS<sub>2</sub> QDs-CNTs/S@NH) cathode was synthesized <i>via</i> a hydrothermal process, in which conductive polar MoS<sub>2</sub> quantum dot-decorated carbon nanotube (CNT) networks coated with an ultrathin Ni(OH)<sub>2</sub> layer acted as an efficient electrocatalyst. MoS<sub>2</sub> QD nanoparticles with a high conductivity and catalytic nature can enhance the kinetics of polysulfide conversion, expedite Li<sub>2</sub>S nucleation, and decrease the reaction energy barrier. The thin outer Ni(OH)<sub>2</sub> layer physically confines active sulfur and meanwhile provides abundant sites for adsorption and conversion of polysulfides. Benefiting from these merits, a battery using MoS<sub>2</sub> QDs-CNTs/S@NH as the sulfur host cathode exhibits excellent electrochemical performances with rate capabilities of 953.7 mA h g<sup>-1</sup> at 0.1C and 606.6 mA h g<sup>-1</sup> at 2.0C. A prominent cycling stability of a 0.052% decay rate per cycle after 800 cycles is achieved even at 2C.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00068d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The slow redox kinetics and shuttle effect of polysulfides severely obstruct the further development of lithium-sulfur (Li-S) batteries. Constructing sulfur host materials with high conductivity and catalytic capability is well acknowledged as an effective strategy for promoting polysulfide conversion. Herein, a well-designed MoS2 QDs-CNTs/S@Ni(OH)2 (labeled as MoS2 QDs-CNTs/S@NH) cathode was synthesized via a hydrothermal process, in which conductive polar MoS2 quantum dot-decorated carbon nanotube (CNT) networks coated with an ultrathin Ni(OH)2 layer acted as an efficient electrocatalyst. MoS2 QD nanoparticles with a high conductivity and catalytic nature can enhance the kinetics of polysulfide conversion, expedite Li2S nucleation, and decrease the reaction energy barrier. The thin outer Ni(OH)2 layer physically confines active sulfur and meanwhile provides abundant sites for adsorption and conversion of polysulfides. Benefiting from these merits, a battery using MoS2 QDs-CNTs/S@NH as the sulfur host cathode exhibits excellent electrochemical performances with rate capabilities of 953.7 mA h g-1 at 0.1C and 606.6 mA h g-1 at 2.0C. A prominent cycling stability of a 0.052% decay rate per cycle after 800 cycles is achieved even at 2C.

MoS2 量子点装饰的 CNT 网络作为硫宿主,可增强先进锂硫电池的电化学动力学。
多硫化物缓慢的氧化还原动力学和穿梭效应严重阻碍了锂硫(Li-S)电池的进一步发展。构建具有高导电性和催化能力的硫宿主材料被认为是促进多硫化物转化的有效策略。本文通过水热法合成了一种精心设计的 MoS2 QDs-CNTs/S@Ni(OH)2(标记为 MoS2 QDs-CNTs/S@NH)阴极,其中导电极性 MoS2 量子点装饰的碳纳米管(CNT)网络涂覆了一层超薄的 Ni(OH)2 层,起到了高效电催化剂的作用。MoS2 QD 纳米粒子具有高导电性和催化性,能增强多硫化物转化的动力学,加速 Li2S 成核,降低反应能垒。外层较薄的 Ni(OH)2 层物理限制了活性硫,同时为多硫化物的吸附和转化提供了丰富的位点。得益于这些优点,使用 MoS2 QDs-CNTs/S@NH 作为硫主阴极的电池表现出优异的电化学性能,在 0.1C 和 2.0C 温度下的速率分别为 953.7 mA h g-1 和 606.6 mA h g-1。即使在 2 摄氏度的条件下,也能实现显著的循环稳定性,在 800 个循环后,每个循环的衰减率仅为 0.052%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信