Jianhua Mo, Xiang Xu, Andong Ma, Mingjun Lu, Xianlong Wang, Qihong Rui, Jianbin Zhu, Haitao Wen, Genyun Lin, Linda Knutsson, Peter van Zijl, Zhibo Wen
{"title":"Dynamic glucose-enhanced MRI of gliomas: A preliminary clinical application.","authors":"Jianhua Mo, Xiang Xu, Andong Ma, Mingjun Lu, Xianlong Wang, Qihong Rui, Jianbin Zhu, Haitao Wen, Genyun Lin, Linda Knutsson, Peter van Zijl, Zhibo Wen","doi":"10.1002/nbm.5265","DOIUrl":null,"url":null,"abstract":"<p><p>The study aimed to investigate the feasibility of dynamic glucose-enhanced (DGE) MRI technology in the clinical application of glioma. Twenty patients with glioma were examined using a preoperative DGE-MRI protocol before clinical intervention. A brief hyperglycemic state was achieved by injecting 50 mL of 50% w/w D-glucose intravenously during the DGE imaging. The total acquisition time for the DGE was 15 min. Area-under-the-curve (AUC) images were calculated using the DGE images. AUC<sub>2-7min</sub> values of the glioma core, margin area, edema area, and contralateral brain parenchyma were compared using Mann-Whitney U tests. Overall, gray and white matter areas in the AUC images showed relatively low DGE signal change and bilateral symmetry. However, the tumor cores displayed a significant hyperintensity. A high DGE signal change was also seen in the necrotic, cystic, and cerebrospinal areas. These results show that DGE MRI is a feasible technique for the study of brain tumors as part of a clinical exam. Importantly, DGE MRI showed enhancement in areas confirmed histopathologically as tumors, whereas Gd T1w MRI did not show any enhancement in this area. Since the D-glucose molecule is smaller than Gd-based contrast agents, DGE MRI may be more sensitive to subtle blood-brain barrier disruptions, thus potentially providing early information about possible malignancy. These findings provide a new perspective for the further exploration and analysis of D-glucose uptake in brain tumors.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5265"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604297/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5265","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The study aimed to investigate the feasibility of dynamic glucose-enhanced (DGE) MRI technology in the clinical application of glioma. Twenty patients with glioma were examined using a preoperative DGE-MRI protocol before clinical intervention. A brief hyperglycemic state was achieved by injecting 50 mL of 50% w/w D-glucose intravenously during the DGE imaging. The total acquisition time for the DGE was 15 min. Area-under-the-curve (AUC) images were calculated using the DGE images. AUC2-7min values of the glioma core, margin area, edema area, and contralateral brain parenchyma were compared using Mann-Whitney U tests. Overall, gray and white matter areas in the AUC images showed relatively low DGE signal change and bilateral symmetry. However, the tumor cores displayed a significant hyperintensity. A high DGE signal change was also seen in the necrotic, cystic, and cerebrospinal areas. These results show that DGE MRI is a feasible technique for the study of brain tumors as part of a clinical exam. Importantly, DGE MRI showed enhancement in areas confirmed histopathologically as tumors, whereas Gd T1w MRI did not show any enhancement in this area. Since the D-glucose molecule is smaller than Gd-based contrast agents, DGE MRI may be more sensitive to subtle blood-brain barrier disruptions, thus potentially providing early information about possible malignancy. These findings provide a new perspective for the further exploration and analysis of D-glucose uptake in brain tumors.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.