Stefano Zucca, Chiara La Rosa, Tommaso Fellin, Paolo Peretto, Serena Bovetti
{"title":"Developmental encoding of natural sounds in the mouse auditory cortex.","authors":"Stefano Zucca, Chiara La Rosa, Tommaso Fellin, Paolo Peretto, Serena Bovetti","doi":"10.1093/cercor/bhae438","DOIUrl":null,"url":null,"abstract":"<p><p>Mice communicate through high-frequency ultrasonic vocalizations, which are crucial for social interactions such as courtship and aggression. Although ultrasonic vocalization representation has been found in adult brain areas along the auditory pathway, including the auditory cortex, no evidence is available on the neuronal representation of ultrasonic vocalizations early in life. Using in vivo two-photon calcium imaging, we analyzed auditory cortex layer 2/3 neuronal responses to USVs, pure tones (4 to 90 kHz), and high-frequency modulated sweeps from postnatal day 12 (P12) to P21. We found that ACx neurons are tuned to respond to ultrasonic vocalization syllables as early as P12 to P13, with an increasing number of responsive cells as the mouse age. By P14, while pure tone responses showed a frequency preference, no syllable preference was observed. Additionally, at P14, USVs, pure tones, and modulated sweeps activate clusters of largely nonoverlapping responsive neurons. Finally, we show that while cell correlation decreases with increasing processing of peripheral auditory stimuli, neurons responding to the same stimulus maintain highly correlated spontaneous activity after circuits have attained mature organization, forming neuronal subnetworks sharing similar functional properties.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae438","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mice communicate through high-frequency ultrasonic vocalizations, which are crucial for social interactions such as courtship and aggression. Although ultrasonic vocalization representation has been found in adult brain areas along the auditory pathway, including the auditory cortex, no evidence is available on the neuronal representation of ultrasonic vocalizations early in life. Using in vivo two-photon calcium imaging, we analyzed auditory cortex layer 2/3 neuronal responses to USVs, pure tones (4 to 90 kHz), and high-frequency modulated sweeps from postnatal day 12 (P12) to P21. We found that ACx neurons are tuned to respond to ultrasonic vocalization syllables as early as P12 to P13, with an increasing number of responsive cells as the mouse age. By P14, while pure tone responses showed a frequency preference, no syllable preference was observed. Additionally, at P14, USVs, pure tones, and modulated sweeps activate clusters of largely nonoverlapping responsive neurons. Finally, we show that while cell correlation decreases with increasing processing of peripheral auditory stimuli, neurons responding to the same stimulus maintain highly correlated spontaneous activity after circuits have attained mature organization, forming neuronal subnetworks sharing similar functional properties.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.