{"title":"The bone Gla protein osteocalcin is expressed in cranial neural crest cells.","authors":"Rotem Kalev-Altman, Veatriki Fraggi-Rankis, Efrat Monsonego-Ornan, Dalit Sela-Donenfeld","doi":"10.1186/s13104-024-06990-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteocalcin is a small protein abundant in the bone extracellular-matrix, that serves as a marker for mature osteoblasts. To become activated, osteocalcin undergoes a specific post-translational carboxylation. Osteocalcin is expressed at advanced stages of embryogenesis and after birth, when bone formation takes place. Neural crest cells (NCCs) are a unique cell population that evolves during early stages of development. While initially NCCs populate the dorsal neural-tube, later they undergo epithelial-to-mesenchymal-transition and migrate throughout the embryo in highly-regulated manner. NCCs give rise to multiple cell types including neurons and glia of the peripheral nervous system, chromaffin cells and skin melanocytes. Remarkably, in the head region, NCCs give rise to cartilage and bone.</p><p><strong>Finding: </strong>Here we report that osteocalcin is detected in cranial NCCs. Analysis of chick embryos at stages of cranial NCC migration revealed that osteocalcin mRNA and protein is expressed in pre-migratory and migratory NCCs in-vivo and ex-vivo. Addition of warfarin, an inhibitor of osteocalcin carboxylation, onto neural-tube explants, reduced the amount of NCC migration. These results provide the first evidence of osteocalcin presence in cranial NCCs, much before they give rise to craniofacial skeleton, and propose its possible involvement in the regulation of NCC migration.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-024-06990-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Osteocalcin is a small protein abundant in the bone extracellular-matrix, that serves as a marker for mature osteoblasts. To become activated, osteocalcin undergoes a specific post-translational carboxylation. Osteocalcin is expressed at advanced stages of embryogenesis and after birth, when bone formation takes place. Neural crest cells (NCCs) are a unique cell population that evolves during early stages of development. While initially NCCs populate the dorsal neural-tube, later they undergo epithelial-to-mesenchymal-transition and migrate throughout the embryo in highly-regulated manner. NCCs give rise to multiple cell types including neurons and glia of the peripheral nervous system, chromaffin cells and skin melanocytes. Remarkably, in the head region, NCCs give rise to cartilage and bone.
Finding: Here we report that osteocalcin is detected in cranial NCCs. Analysis of chick embryos at stages of cranial NCC migration revealed that osteocalcin mRNA and protein is expressed in pre-migratory and migratory NCCs in-vivo and ex-vivo. Addition of warfarin, an inhibitor of osteocalcin carboxylation, onto neural-tube explants, reduced the amount of NCC migration. These results provide the first evidence of osteocalcin presence in cranial NCCs, much before they give rise to craniofacial skeleton, and propose its possible involvement in the regulation of NCC migration.
BMC Research NotesBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍:
BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.