Simultaneous detection of novel goose parvovirus and novel duck reovirus by SYBR Green I-based duplex real-time quantitative polymerase chain reaction.
IF 2.6 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yimin Wang, Yong Wang, Zhuangli Bi, Yuhan Liu, Chunchun Meng, Jie Zhu, Guangqing Liu, Chuanfeng Li
{"title":"Simultaneous detection of novel goose parvovirus and novel duck reovirus by SYBR Green I-based duplex real-time quantitative polymerase chain reaction.","authors":"Yimin Wang, Yong Wang, Zhuangli Bi, Yuhan Liu, Chunchun Meng, Jie Zhu, Guangqing Liu, Chuanfeng Li","doi":"10.1007/s13205-024-04139-8","DOIUrl":null,"url":null,"abstract":"<p><p>Co-infection with novel goose parvovirus (NGPV) and novel duck reovirus (NDRV) is common, significantly impeding duck growth and resulting in considerable economic losses within the duck farming industry. To facilitate rapid and accurate diagnosis and differentiation of these two viruses, this study developed a SYBR Green I-based duplex real-time quantitative polymerase chain reaction (qPCR) assay. This assay enabled the simultaneous detection of NGPV and NDRV by exploiting their distinct melting temperatures (Tm): 78.5 ± 0.50 °C for NGPV and 84.5 ± 0.50 °C for NDRV. No amplification was observed for other prevalent non-target duck viruses. The intra- and inter-assay coefficients of variation were less than 1.75%. The assay showed good performance with the same detection limit of 10<sup>2</sup> copies/μL for both NGPV and NDRV. The results of the clinical testing indicated that 45.3% (34/75) of the samples tested positive for NGPV, while 38.7% (29/75) were positive for NDRV. Notably, 13.3% (10/75) exhibited co-infection. These results revealed that the sensitivity of the developed method exceed that of conventional polymerase chain reaction (PCR). The developed method for the identifying of NGPV and NDRV shows good specificity, sensitivity, and repeatability, rendering it an effective tool for the simultaneous detection of co-infection with NGPV and NDRV.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 11","pages":"288"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532324/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04139-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Co-infection with novel goose parvovirus (NGPV) and novel duck reovirus (NDRV) is common, significantly impeding duck growth and resulting in considerable economic losses within the duck farming industry. To facilitate rapid and accurate diagnosis and differentiation of these two viruses, this study developed a SYBR Green I-based duplex real-time quantitative polymerase chain reaction (qPCR) assay. This assay enabled the simultaneous detection of NGPV and NDRV by exploiting their distinct melting temperatures (Tm): 78.5 ± 0.50 °C for NGPV and 84.5 ± 0.50 °C for NDRV. No amplification was observed for other prevalent non-target duck viruses. The intra- and inter-assay coefficients of variation were less than 1.75%. The assay showed good performance with the same detection limit of 102 copies/μL for both NGPV and NDRV. The results of the clinical testing indicated that 45.3% (34/75) of the samples tested positive for NGPV, while 38.7% (29/75) were positive for NDRV. Notably, 13.3% (10/75) exhibited co-infection. These results revealed that the sensitivity of the developed method exceed that of conventional polymerase chain reaction (PCR). The developed method for the identifying of NGPV and NDRV shows good specificity, sensitivity, and repeatability, rendering it an effective tool for the simultaneous detection of co-infection with NGPV and NDRV.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.