Highly resistant Salmonella Heidelberg circulating in broiler farms in southern Brazil.

IF 2.1 4区 生物学 Q3 MICROBIOLOGY
Bianca Fagundes Saggin, Karen Apellanis Borges, Thales Quedi Furian, Gustavo da Rosa Fünkler, Rafael Mollerke, Manuela Machado Cenci, Roberta de Castro Bönmann, Tiele Maria Feijó de Fraga, Daniela Tonini da Rocha, Hamilton Luiz de Souza Moraes, Vladimir Pinheiro do Nascimento
{"title":"Highly resistant Salmonella Heidelberg circulating in broiler farms in southern Brazil.","authors":"Bianca Fagundes Saggin, Karen Apellanis Borges, Thales Quedi Furian, Gustavo da Rosa Fünkler, Rafael Mollerke, Manuela Machado Cenci, Roberta de Castro Bönmann, Tiele Maria Feijó de Fraga, Daniela Tonini da Rocha, Hamilton Luiz de Souza Moraes, Vladimir Pinheiro do Nascimento","doi":"10.1007/s42770-024-01555-z","DOIUrl":null,"url":null,"abstract":"<p><p>Salmonella Heidelberg, a serotype commonly found in Southern Brazil, is characterized by its high resistance and persistence in the poultry production. This study aimed to characterize the antimicrobial resistance of S. Heidelberg strains. In total, 100 strains isolated from poultry between 2020 and 2022 were evaluated. Phenotypic analyses were performed to determine the susceptibility of 16 antimicrobial agents and detect extended-spectrum beta-lactamase (ESBL)-producing strains. Molecular analyses were performed to detect 11 antimicrobial resistance genes (using polymerase chain reaction [PCR]) and integron class 1 genes (using real-time PCR). A total of 98% of isolates was classified as multidrug-resistant. All isolates were resistant to penicillin and lincomycin. High resistance rates (> 85%) were observed for tetracycline, doxycycline, cephalexin, amoxicillin, and ceftiofur. A significant increase (p < 0.05) in antimicrobial resistance is observed for amoxicillin, cephalexin, and ceftiofur between 2020 and 2022. No significant differences (p > 0.05) were observed in antimicrobial resistance with respect to the region of isolation, season, or company. In total, 25% of isolates were ESBL producers. Integron class 1 gene was detected in only one strain, whereas sul2 was detected in 99%, tet(A) in 66%, bla<sub>TEM</sub> in 37%, strB in 17%, cmlA in 15%, and tet(B) in 11% of the strains. Other genes were not detected or were detected in < 2% of the strains. The results showed a high overall resistance, which increased over the evaluated period. The high proportions of ESBL-producing and antimicrobial resistant strains represent a risk for highly-resistant S. Heidelberg dissemination across broiler flocks.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42770-024-01555-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Salmonella Heidelberg, a serotype commonly found in Southern Brazil, is characterized by its high resistance and persistence in the poultry production. This study aimed to characterize the antimicrobial resistance of S. Heidelberg strains. In total, 100 strains isolated from poultry between 2020 and 2022 were evaluated. Phenotypic analyses were performed to determine the susceptibility of 16 antimicrobial agents and detect extended-spectrum beta-lactamase (ESBL)-producing strains. Molecular analyses were performed to detect 11 antimicrobial resistance genes (using polymerase chain reaction [PCR]) and integron class 1 genes (using real-time PCR). A total of 98% of isolates was classified as multidrug-resistant. All isolates were resistant to penicillin and lincomycin. High resistance rates (> 85%) were observed for tetracycline, doxycycline, cephalexin, amoxicillin, and ceftiofur. A significant increase (p < 0.05) in antimicrobial resistance is observed for amoxicillin, cephalexin, and ceftiofur between 2020 and 2022. No significant differences (p > 0.05) were observed in antimicrobial resistance with respect to the region of isolation, season, or company. In total, 25% of isolates were ESBL producers. Integron class 1 gene was detected in only one strain, whereas sul2 was detected in 99%, tet(A) in 66%, blaTEM in 37%, strB in 17%, cmlA in 15%, and tet(B) in 11% of the strains. Other genes were not detected or were detected in < 2% of the strains. The results showed a high overall resistance, which increased over the evaluated period. The high proportions of ESBL-producing and antimicrobial resistant strains represent a risk for highly-resistant S. Heidelberg dissemination across broiler flocks.

巴西南部肉鸡养殖场中流行的高抗药性海德堡沙门氏菌。
海德堡沙门氏菌(Salmonella Heidelberg)是巴西南部常见的一种血清型,在家禽生产中具有高抗药性和持久性的特点。本研究旨在分析海德堡沙门氏菌菌株的抗菌性。共对 2020 年至 2022 年期间从家禽中分离出的 100 株菌株进行了评估。表型分析确定了 16 种抗菌药物的敏感性,并检测了产广谱β-内酰胺酶(ESBL)的菌株。分子分析检测了 11 种抗菌药耐药基因(采用聚合酶链反应 [PCR])和 1 类整合子基因(采用实时 PCR)。98%的分离菌株被归类为多重耐药菌株。所有分离株都对青霉素和林可霉素耐药。四环素、强力霉素、头孢氨苄、阿莫西林和头孢噻呋的耐药率较高(> 85%)。与分离地区、季节或公司有关的抗菌素耐药性明显增加(P 0.05)。总共有 25% 的分离株产生了 ESBL。只有一株菌株检测到 Integron 1 类基因,而 99% 的菌株检测到 sul2,66% 的菌株检测到 tet(A),37% 的菌株检测到 blaTEM,17% 的菌株检测到 strB,15% 的菌株检测到 cmlA,11% 的菌株检测到 tet(B)。其他基因未被检测到或仅在
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brazilian Journal of Microbiology
Brazilian Journal of Microbiology 生物-微生物学
CiteScore
4.10
自引率
4.50%
发文量
216
审稿时长
1.0 months
期刊介绍: The Brazilian Journal of Microbiology is an international peer reviewed journal that covers a wide-range of research on fundamental and applied aspects of microbiology. The journal considers for publication original research articles, short communications, reviews, and letters to the editor, that may be submitted to the following sections: Biotechnology and Industrial Microbiology, Food Microbiology, Bacterial and Fungal Pathogenesis, Clinical Microbiology, Environmental Microbiology, Veterinary Microbiology, Fungal and Bacterial Physiology, Bacterial, Fungal and Virus Molecular Biology, Education in Microbiology. For more details on each section, please check out the instructions for authors. The journal is the official publication of the Brazilian Society of Microbiology and currently publishes 4 issues per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信