Ultralow-Power Programmable 3D Vertical Phase-Change Memory with Heater-All-Around Configuration.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Namwook Hur, Yechan Kim, Beomsung Park, Sohui Yoon, Seunghwan Kim, Dong-Hyeok Lim, Hongsik Jeong, Yoongwoo Kwon, Joonki Suh
{"title":"Ultralow-Power Programmable 3D Vertical Phase-Change Memory with Heater-All-Around Configuration.","authors":"Namwook Hur, Yechan Kim, Beomsung Park, Sohui Yoon, Seunghwan Kim, Dong-Hyeok Lim, Hongsik Jeong, Yoongwoo Kwon, Joonki Suh","doi":"10.1002/smtd.202401381","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in phase-change memory (PCM) technology have predominantly stemmed from material-level designs, which have led to fast and durable device performances. However, there remains a pressing need to address the enormous energy consumption through device-level electrothermal solutions. Thus, the concept of a 3D heater-all-around (HAA) PCM fabricated along the vertical nanoscale hole of dielectric/metal/dielectric stacks is proposed. The embedded thin metallic heater completely encircles the phase-change material, so it promotes highly localized Joule heating with minimal loss. Hence, a low RESET current density of 6-8 MA cm<sup>-2</sup> and operation energy of 150-200 pJ are achieved even for a sizable hole diameter of 300 nm. Beyond the conventional 2D scaling of the bottom electrode contact, it accordingly enhances ≈80% of operational energy efficiency compared to planar PCM with an identical contact area. In addition, reliable memory operations of ≈10<sup>5</sup> cycles and the 3-bits-per-cell multilevel storage despite ultrathin (<10 nm) sidewall deposition of Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> are optimized. The proposed 3D-scaled HAA-PCM architecture holds promise as a universally applicable backbone for emerging phase-change chalcogenides toward high-density, ultralow-power computing units.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401381"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401381","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in phase-change memory (PCM) technology have predominantly stemmed from material-level designs, which have led to fast and durable device performances. However, there remains a pressing need to address the enormous energy consumption through device-level electrothermal solutions. Thus, the concept of a 3D heater-all-around (HAA) PCM fabricated along the vertical nanoscale hole of dielectric/metal/dielectric stacks is proposed. The embedded thin metallic heater completely encircles the phase-change material, so it promotes highly localized Joule heating with minimal loss. Hence, a low RESET current density of 6-8 MA cm-2 and operation energy of 150-200 pJ are achieved even for a sizable hole diameter of 300 nm. Beyond the conventional 2D scaling of the bottom electrode contact, it accordingly enhances ≈80% of operational energy efficiency compared to planar PCM with an identical contact area. In addition, reliable memory operations of ≈105 cycles and the 3-bits-per-cell multilevel storage despite ultrathin (<10 nm) sidewall deposition of Ge2Sb2Te5 are optimized. The proposed 3D-scaled HAA-PCM architecture holds promise as a universally applicable backbone for emerging phase-change chalcogenides toward high-density, ultralow-power computing units.

采用全方位加热器配置的超低功耗可编程 3D 垂直相位变化存储器。
相变存储器(PCM)技术的最新进展主要源于材料层面的设计,从而实现了快速、耐用的器件性能。然而,通过器件级电热解决方案来解决巨大能耗问题仍是当务之急。因此,我们提出了沿着电介质/金属/电介质堆栈的垂直纳米级孔制造三维全方位加热器(HAA)PCM 的概念。嵌入式薄金属加热器完全环绕相变材料,因此能以最小的损耗促进高度局部焦耳加热。因此,即使孔直径达到 300 nm,也能实现 6-8 MA cm-2 的低 RESET 电流密度和 150-200 pJ 的工作能量。与具有相同接触面积的平面 PCM 相比,它超越了传统的底部电极接触二维扩展,相应地提高了≈80% 的工作能效。此外,尽管采用了超薄 (2Sb2Te5) 技术,但仍优化了≈105 周期的可靠存储操作和每单元 3 位的多级存储。所提出的三维尺度 HAA-PCM 架构有望成为新兴相变钙钛矿的普遍适用的骨架,从而实现高密度、超低功耗计算单元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信