Strain Effects and Crystalline-Amorphous Interface of NiFe-LDH@S-NiFeOx/NF with Heterogeneous Structure for Enhancing Electrocatalytic Oxygen Evolution Reaction of Water-Electrolysis

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-06 DOI:10.1002/smll.202406071
Huan Xu, Xiao Sun, Lingtong Ding, Jingjing Liu, Dan Zhang, Minmin Liu, Xiao Wang, Qixian Zhang, Jiujun Zhang
{"title":"Strain Effects and Crystalline-Amorphous Interface of NiFe-LDH@S-NiFeOx/NF with Heterogeneous Structure for Enhancing Electrocatalytic Oxygen Evolution Reaction of Water-Electrolysis","authors":"Huan Xu,&nbsp;Xiao Sun,&nbsp;Lingtong Ding,&nbsp;Jingjing Liu,&nbsp;Dan Zhang,&nbsp;Minmin Liu,&nbsp;Xiao Wang,&nbsp;Qixian Zhang,&nbsp;Jiujun Zhang","doi":"10.1002/smll.202406071","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical water-electrolysis for hydrogen generation often requires more energy due to the sluggish oxygen evolution reaction (OER). This work introduces a double-layered nanoflower catalyst, NiFe-LDH@S-NiFeO<sub>x</sub>/NF, featuring a crystalline NiFe-LDH coating on amorphous S-NiFeO<sub>x</sub> on nickel foam. Strategically integrating a crystalline-amorphous (c-a) heterostructure leverages strain engineering to enhance OER activity with low overpotentials (<i>η</i><sub>100</sub> = 220 and <i>η</i><sub>500</sub> = 245 mV) and stability (135 h at <i>η</i><sub>100</sub> and 80 h at <i>η</i><sub>500</sub>). Theoretical density functional theory (DFT) calculations reveal that the compressive strain can optimize the adsorption of oxygen-containing intermediates to reduce the reaction energy barrier, thus improving the reaction kinetics and performance of OER. Moreover, its phosphated derivative, NiFeP@S-NiFeO<sub>x</sub>/NF, exhibits high hydrogen evolution reaction (HER) performance (<i>η</i><sub>10</sub> = 64 mV, <i>η</i><sub>100</sub> = 187 mV). An alkaline water-electrolysis cell of NiFeP@S-NiFeO<sub>x</sub>/NF(−)||NiFe-LDH@S-NiFeO<sub>x</sub>/NF(+) requires only a cell voltage of 1.77 V at 100 mA cm<sup>−2</sup>, demonstrating excellent stability over 110 h (at both 10 and 100 mA cm<sup>−2</sup>). This work highlights the benefits of integrating crystal-amorphous interfaces and strain effects, offering insights into the understanding and optimizing catalytic OER mechanism and advancing water-electrolysis technology.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202406071","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical water-electrolysis for hydrogen generation often requires more energy due to the sluggish oxygen evolution reaction (OER). This work introduces a double-layered nanoflower catalyst, NiFe-LDH@S-NiFeOx/NF, featuring a crystalline NiFe-LDH coating on amorphous S-NiFeOx on nickel foam. Strategically integrating a crystalline-amorphous (c-a) heterostructure leverages strain engineering to enhance OER activity with low overpotentials (η100 = 220 and η500 = 245 mV) and stability (135 h at η100 and 80 h at η500). Theoretical density functional theory (DFT) calculations reveal that the compressive strain can optimize the adsorption of oxygen-containing intermediates to reduce the reaction energy barrier, thus improving the reaction kinetics and performance of OER. Moreover, its phosphated derivative, NiFeP@S-NiFeOx/NF, exhibits high hydrogen evolution reaction (HER) performance (η10 = 64 mV, η100 = 187 mV). An alkaline water-electrolysis cell of NiFeP@S-NiFeOx/NF(−)||NiFe-LDH@S-NiFeOx/NF(+) requires only a cell voltage of 1.77 V at 100 mA cm−2, demonstrating excellent stability over 110 h (at both 10 and 100 mA cm−2). This work highlights the benefits of integrating crystal-amorphous interfaces and strain effects, offering insights into the understanding and optimizing catalytic OER mechanism and advancing water-electrolysis technology.

Abstract Image

Abstract Image

具有异质结构的 NiFe-LDH@S-NiFeOx/NF 的应变效应和晶体-非晶界面用于增强水-电解的电催化氧进化反应
由于氧进化反应(OER)缓慢,电化学水电解制氢通常需要更多能量。这项工作介绍了一种双层纳米花催化剂--NiFe-LDH@S-NiFeOx/NF,其特点是在泡沫镍上的非晶态 S-NiFeOx 上镀有一层结晶 NiFe-LDH 涂层。结晶-非晶(c-a)异质结构的策略性整合利用了应变工程,以较低的过电位(η100 = 220 和 η500 = 245 mV)和稳定性(η100 时 135 小时,η500 时 80 小时)提高了 OER 活性。理论密度泛函理论(DFT)计算表明,压缩应变可以优化含氧中间体的吸附,降低反应能垒,从而改善 OER 的反应动力学和性能。此外,其磷化衍生物 NiFeP@S-NiFeOx/NF 表现出很高的氢进化反应(HER)性能(η10 = 64 mV,η100 = 187 mV)。由 NiFeP@S-NiFeOx/NF(-)||NiFe-LDH@S-NiFeOx/NF(+) 组成的碱性水电解电池在 100 mA cm-2 的条件下只需要 1.77 V 的电池电压,在 110 小时内(10 mA cm-2 和 100 mA cm-2 条件下)表现出卓越的稳定性。这项工作凸显了整合晶体-非晶界面和应变效应的益处,为理解和优化催化 OER 机制以及推进水电解技术提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信