Jie Xu, Yun Tong, Manman Lin, Zikai Zhang, Tian Li, Fan Zhang
{"title":"Inhibition of cytokine-like protein 1 transcription hinders wound-healing process in diabetic rats.","authors":"Jie Xu, Yun Tong, Manman Lin, Zikai Zhang, Tian Li, Fan Zhang","doi":"10.1111/dme.15459","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study explored the function and mechanism of cytokine-like protein 1 (CYTL1) in regulating the wound-healing process of rats with diabetes mellitus (DM).</p><p><strong>Methods: </strong>A wound was made in diabetic rats, in which CYTL1 overexpression or HDAC1 expression-interfering adenovirus was injected. The wound area on day 0, 7, 14 and 21 was observed and photographed to calculate the wound-healing rate. The wound tissues were collected for H&E, Masson staining and CD31 immunohistochemistry. The HDAC1 and CYTL1 mRNA and protein expressions in wound tissues were detected by RT-qPCR and western blot. The regulation of HDAC1 on CYTL1 was predicted by hTFtarget and AnimalTFDB database. The H3K27Ac level in the CYTL1 promoter was detected by chromatin immunoprecipitation (ChIP).</p><p><strong>Results: </strong>Diabetic rats with CYTL1 overexpression or interfered HDAC1 expression had accelerated the wound-healing rate, in which massive fibroblasts, attenuated inflammatory infiltration and increased collagen and microvessel density were observed. Further experiments found that HDAC1 can inhibit CYTL1 transcription and expression by inhibiting H3K27Ac expression in CYTL1 promoter.</p><p><strong>Conclusion: </strong>Collected evidence showed HDAC1 can inhibit CYTL1 transcription by down-regulating the H3K27Ac level in CYTL1 promoter to slow down the wound-healing process in diabetic ulcer rats.</p>","PeriodicalId":11251,"journal":{"name":"Diabetic Medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/dme.15459","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: This study explored the function and mechanism of cytokine-like protein 1 (CYTL1) in regulating the wound-healing process of rats with diabetes mellitus (DM).
Methods: A wound was made in diabetic rats, in which CYTL1 overexpression or HDAC1 expression-interfering adenovirus was injected. The wound area on day 0, 7, 14 and 21 was observed and photographed to calculate the wound-healing rate. The wound tissues were collected for H&E, Masson staining and CD31 immunohistochemistry. The HDAC1 and CYTL1 mRNA and protein expressions in wound tissues were detected by RT-qPCR and western blot. The regulation of HDAC1 on CYTL1 was predicted by hTFtarget and AnimalTFDB database. The H3K27Ac level in the CYTL1 promoter was detected by chromatin immunoprecipitation (ChIP).
Results: Diabetic rats with CYTL1 overexpression or interfered HDAC1 expression had accelerated the wound-healing rate, in which massive fibroblasts, attenuated inflammatory infiltration and increased collagen and microvessel density were observed. Further experiments found that HDAC1 can inhibit CYTL1 transcription and expression by inhibiting H3K27Ac expression in CYTL1 promoter.
Conclusion: Collected evidence showed HDAC1 can inhibit CYTL1 transcription by down-regulating the H3K27Ac level in CYTL1 promoter to slow down the wound-healing process in diabetic ulcer rats.
期刊介绍:
Diabetic Medicine, the official journal of Diabetes UK, is published monthly simultaneously, in print and online editions.
The journal publishes a range of key information on all clinical aspects of diabetes mellitus, ranging from human genetic studies through clinical physiology and trials to diabetes epidemiology. We do not publish original animal or cell culture studies unless they are part of a study of clinical diabetes involving humans. Categories of publication include research articles, reviews, editorials, commentaries, and correspondence. All material is peer-reviewed.
We aim to disseminate knowledge about diabetes research with the goal of improving the management of people with diabetes. The journal therefore seeks to provide a forum for the exchange of ideas between clinicians and researchers worldwide. Topics covered are of importance to all healthcare professionals working with people with diabetes, whether in primary care or specialist services.
Surplus generated from the sale of Diabetic Medicine is used by Diabetes UK to know diabetes better and fight diabetes more effectively on behalf of all people affected by and at risk of diabetes as well as their families and carers.”