{"title":"Molecularly imprinted electrochemical sensor based on APTES-functionalized indium tin oxide electrode for the determination of sulfadiazine","authors":"Samridhi Chopra, Manisha Balkhandia, Manisha Khatak, Navya Sagar, Ved Varun Agrawal","doi":"10.1007/s00604-024-06781-8","DOIUrl":null,"url":null,"abstract":"<div><p>An electrochemical sensor was developed for the sensitive and selective detection of sulfadiazine (SDZ), based on a molecularly imprinted polymer (MIP) film formed on an indium tin oxide (ITO) electrode through a self-assembly process. The SDZ-imprinted ITO electrode (SDZ-MIP/APTES-ITO) was prepared through in situ polymerization using sulfadiazine, methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), and 2,2′-azobisisobutyronitrile (AIBN) as the template, functional monomer, cross-linker, and initiator respectively. Before polymerization, the ITO electrode was functionalized with 3-aminopropyltriethoxysilane (APTES) to promote covalent attachment of the polymer to the electrode. After polymerization, the template molecule SDZ was removed to create selective recognition sites, forming the molecularly imprinted polymer electrode (MIP/APTES-ITO), which facilitates sulfadiazine detection. The sensor’s performance was evaluated using cyclic and differential pulse voltammetry, demonstrating a linear response in the sulfadiazine concentration range 0.1 to 300 μM, with a detection limit of 0.11 μM. The MIP-based sensor exhibited good reproducibility, repeatability, selectivity, and stability in sulfadiazine detection. Its practical applicability was confirmed by the successful quantification of sulfadiazine in spiked milk samples.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 12","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06781-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An electrochemical sensor was developed for the sensitive and selective detection of sulfadiazine (SDZ), based on a molecularly imprinted polymer (MIP) film formed on an indium tin oxide (ITO) electrode through a self-assembly process. The SDZ-imprinted ITO electrode (SDZ-MIP/APTES-ITO) was prepared through in situ polymerization using sulfadiazine, methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), and 2,2′-azobisisobutyronitrile (AIBN) as the template, functional monomer, cross-linker, and initiator respectively. Before polymerization, the ITO electrode was functionalized with 3-aminopropyltriethoxysilane (APTES) to promote covalent attachment of the polymer to the electrode. After polymerization, the template molecule SDZ was removed to create selective recognition sites, forming the molecularly imprinted polymer electrode (MIP/APTES-ITO), which facilitates sulfadiazine detection. The sensor’s performance was evaluated using cyclic and differential pulse voltammetry, demonstrating a linear response in the sulfadiazine concentration range 0.1 to 300 μM, with a detection limit of 0.11 μM. The MIP-based sensor exhibited good reproducibility, repeatability, selectivity, and stability in sulfadiazine detection. Its practical applicability was confirmed by the successful quantification of sulfadiazine in spiked milk samples.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.