Yong-Hui Jiang, Xin-Chi Shi, Ting Wu, Hao Du, Yi-Bo Pang, Rong Zhou, Hong-Ping Yin, Daniela D Herrera-Balandrano, Dong-Jing Yang, Ai-Min Lu, Pedro Laborda, Victor Polo, Su-Yan Wang
Background: Ceratocystis fimbriata is a fungal pathogen that infects sweet potato roots, producing enormous economic losses. Cyclic polyhydroxy compound quinic acid is a common metabolite synthesized in plant tissues, including sweet potato tubers, showing weak antifungal properties. Although several O-acylated quinic acid derivatives have been synthesized and found in nature and their antifungal properties have been explored, derivatives based on modification of the carboxylic acid have never been evaluated.
Results: In this study, amide derivatives were synthesized via linkage of amines with the carboxylic acid moiety of quinic acid. Derivatives with high dipolar moments and a low number of rotatable bonds showed greater antifungal activities toward C. fimbriata in vitro than quinic and chlorogenic acids. Derivative 5b, which was synthesized by coupling p-aminobenzoic acid (pABA) with quinic acid, had the greatest antifungal activity. 5b showed iron(II)-chelating properties and reduced ergosterol content in C. fimbriata cells, causing irregularities in the fungal cell wall and inhibiting conidia agglutination. Application of 3 mm 5b reduced black rot symptoms in sweet potatoes by 70.1%.
期刊介绍:
Pest Management Science is the international journal of research and development in crop protection and pest control. Since its launch in 1970, the journal has become the premier forum for papers on the discovery, application, and impact on the environment of products and strategies designed for pest management.
Published for SCI by John Wiley & Sons Ltd.