{"title":"Circular RNA circ_0022707 impedes the progression of preeclampsia via the miR-3135b/GHR/PI3K/Akt axis","authors":"Huijing Shao, Rui Guan, Zixi Chen, Ruijiao Kong, Caihong Zhang, Hang Gu","doi":"10.1007/s10142-024-01490-0","DOIUrl":null,"url":null,"abstract":"<div><p>Preeclampsia (PE) is a severe pregnancy complication linked to maternal and fetal health, yet its underlying causes and pathogenesis remain elusive. Circular RNA (circRNA), a form of non-coding RNA, is implicated in the progression of PE; nevertheless, the specific mechanism is not fully elucidated. This study aimed to identify and validate circRNAs that are pivotal in the pathophysiology of PE. Firstly, we constructed a ceRNA network using datasets from the GEO database and identified circ_0022707 as our study target. Then, using qRT-PCR analysis, we validated that circ_0022707 was downregulated in preeclamptic placentas compared to those of normal pregnant women. In situ hybridization assays revealed that circ_0022707 existed in placental villous trophoblast cells. Additionally, Pearson correlation analysis revealed a negative relationship between the expression of circ_0022707 and PE-related indicators (systolic and diastolic blood pressure, along with 24-h proteinuria levels). Furthermore, gain-of-function experiments confirmed that circ_0022707 could promote trophoblast cell proliferation and cell cycle progression while suppressing apoptosis. In vivo experiments using a preeclampsia-like mouse model also demonstrated that circ_0022707 administration could mitigate preeclampsia-like symptoms. Mechanistically, we confirmed that circ_0022707 functions through the miR-3135b/<i>GHR</i>/PI3K/Akt pathway in trophoblast cells. Overall, our study has provided insight into the important function of circ_002707 in the development of PE, enhancing our understanding of the disease's mechanism and proposing a viable therapeutic strategy for PE.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"24 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-024-01490-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Preeclampsia (PE) is a severe pregnancy complication linked to maternal and fetal health, yet its underlying causes and pathogenesis remain elusive. Circular RNA (circRNA), a form of non-coding RNA, is implicated in the progression of PE; nevertheless, the specific mechanism is not fully elucidated. This study aimed to identify and validate circRNAs that are pivotal in the pathophysiology of PE. Firstly, we constructed a ceRNA network using datasets from the GEO database and identified circ_0022707 as our study target. Then, using qRT-PCR analysis, we validated that circ_0022707 was downregulated in preeclamptic placentas compared to those of normal pregnant women. In situ hybridization assays revealed that circ_0022707 existed in placental villous trophoblast cells. Additionally, Pearson correlation analysis revealed a negative relationship between the expression of circ_0022707 and PE-related indicators (systolic and diastolic blood pressure, along with 24-h proteinuria levels). Furthermore, gain-of-function experiments confirmed that circ_0022707 could promote trophoblast cell proliferation and cell cycle progression while suppressing apoptosis. In vivo experiments using a preeclampsia-like mouse model also demonstrated that circ_0022707 administration could mitigate preeclampsia-like symptoms. Mechanistically, we confirmed that circ_0022707 functions through the miR-3135b/GHR/PI3K/Akt pathway in trophoblast cells. Overall, our study has provided insight into the important function of circ_002707 in the development of PE, enhancing our understanding of the disease's mechanism and proposing a viable therapeutic strategy for PE.
期刊介绍:
Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?