Surface Engineering of Polymeric Colloidal Crystals by Temperature - Pressure Annealing.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Jeena Varghese, Visnja Babacic, Mikolaj Pochylski, Jacek Gapinski, Hans-Juergen Butt, George Fytas, Bartlomiej Graczykowski
{"title":"Surface Engineering of Polymeric Colloidal Crystals by Temperature - Pressure Annealing.","authors":"Jeena Varghese, Visnja Babacic, Mikolaj Pochylski, Jacek Gapinski, Hans-Juergen Butt, George Fytas, Bartlomiej Graczykowski","doi":"10.1002/marc.202400668","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer colloidal crystals (PCCs) have been widely explored as acoustic and optical metamaterials and as templates for nanolithography. However, fabrication impurities and fragility of the self-assembled structures are critical bottlenecks for the device's efficiency and applications. We have demonstrated that temperature-assisted pressure [ <math> <semantics><mrow><mi>T</mi> <mo>,</mo> <mi>p</mi> <mo>]</mo></mrow> <annotation>$T,p]$</annotation></semantics> </math> annealing results in the mechanical strengthening of PCCs, which improves with the annealing temperature. Here, the enhancement of elastic properties and morphological features of self-assembled PCC's is evaluated using Brillouin light scattering and scanning electron microscopy. The pressure-induced effects on the vibrational modes of PCCs are also illustrated at temperatures well below the polymer glass transition. While the PCCs colloid constituents display reversibility, the PCC material is strongly irreversible in the performed thermodynamic cycle. The effective elastic modulus enhances from 0.7 GPa for the pristine sample to 0.8 GPa, solely by pressure annealing at room temperature. [ <math> <semantics><mrow><mi>T</mi> <mo>,</mo> <mi>p</mi> <mo>]</mo></mrow> <annotation>$T,p]$</annotation></semantics> </math> annealing at higher temperatures leads to a maximum effective elastic modulus of 1.7 GPa, more than twice the value in the pristine sample. Above a cross-over pressure, <math> <semantics> <mrow><msub><mi>p</mi> <mrow><mi>c</mi> <mspace></mspace></mrow> </msub> <mrow><mo>(</mo> <mo>≈</mo></mrow> </mrow> <annotation>${{p}_{c\\ }}( \\approx $</annotation></semantics> </math> 725 bar at 348 K), the PCCs respond elastically and, hence, reversibly to pressure changes.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400668","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer colloidal crystals (PCCs) have been widely explored as acoustic and optical metamaterials and as templates for nanolithography. However, fabrication impurities and fragility of the self-assembled structures are critical bottlenecks for the device's efficiency and applications. We have demonstrated that temperature-assisted pressure [ T , p ] $T,p]$ annealing results in the mechanical strengthening of PCCs, which improves with the annealing temperature. Here, the enhancement of elastic properties and morphological features of self-assembled PCC's is evaluated using Brillouin light scattering and scanning electron microscopy. The pressure-induced effects on the vibrational modes of PCCs are also illustrated at temperatures well below the polymer glass transition. While the PCCs colloid constituents display reversibility, the PCC material is strongly irreversible in the performed thermodynamic cycle. The effective elastic modulus enhances from 0.7 GPa for the pristine sample to 0.8 GPa, solely by pressure annealing at room temperature. [ T , p ] $T,p]$ annealing at higher temperatures leads to a maximum effective elastic modulus of 1.7 GPa, more than twice the value in the pristine sample. Above a cross-over pressure, p c ( ${{p}_{c\ }}( \approx $ 725 bar at 348 K), the PCCs respond elastically and, hence, reversibly to pressure changes.

通过温度-压力退火实现聚合物胶体晶体的表面工程。
聚合物胶体晶体(PCCs)作为声学和光学超材料以及纳米光刻的模板已被广泛探索。然而,制造过程中的杂质和自组装结构的脆弱性是影响设备效率和应用的关键瓶颈。我们已经证明,温度辅助压力[ T , p ] $T,p]$退火会导致 PCC 的机械强化,并随着退火温度的升高而改善。在此,我们使用布里渊光散射和扫描电子显微镜评估了自组装 PCC 的弹性特性和形态特征的增强。此外,还说明了在远低于聚合物玻璃化转变温度时压力对 PCC 振动模式的影响。虽然 PCCs 胶体成分显示出可逆性,但在所执行的热力学循环中,PCC 材料具有很强的不可逆性。仅通过室温下的压力退火,有效弹性模量就从原始样品的 0.7 GPa 提高到了 0.8 GPa。[ T , p ] $T,p]$退火温度越高,有效弹性模量最大可达 1.7 GPa,是原始样品的两倍多。在交叉压力 p c ( ≈ ${{p}_{c\ }}( (大约 725 巴,348 K 时)以上,PCC 会对压力变化做出弹性响应,因此是可逆的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信