Eugenol and Basil essential oil as priming agents for enhancing arabidopsis immune response.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shogo Hirose, Soyoka Horiyama, Atsushi Morikami, Kazuki Fujiwara, Hironaka Tsukagoshi
{"title":"Eugenol and Basil essential oil as priming agents for enhancing arabidopsis immune response.","authors":"Shogo Hirose, Soyoka Horiyama, Atsushi Morikami, Kazuki Fujiwara, Hironaka Tsukagoshi","doi":"10.1093/bbb/zbae156","DOIUrl":null,"url":null,"abstract":"<p><p>Plants, as sessile organisms, must adapt to environmental changes and defend themselves against biotic stress, including pathogen attack. Their immune responses entail recognition of pathogen patterns, activation of defense mechanisms, and accumulation of various antimicrobial compounds. Eugenol, abundant in basil, has antibacterial properties and enhances plant resistance to viruses. However, its priming effects on biotrophic pathogens remain unclear. Thus, we investigated whether eugenol and basil essential oils could prime Arabidopsis thaliana immunity against the hemi-biotroph Pseudomonas syringae pv. maculicola (Psm) MAFF302723. Our study revealed that both eugenol and basil essential oils functioned as priming agents, mitigating disease symptoms upon Psm infection. This priming effect occurred via NPR1-dependent but salicylic acid-independent signaling. Moreover, our gene expression analysis suggested that priming might influence jasmonic acid/ethylene signaling. These findings underscore the potential of employing natural compounds such as basil essential oil to bolster plant immune responses in sustainable agricultural practices.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae156","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plants, as sessile organisms, must adapt to environmental changes and defend themselves against biotic stress, including pathogen attack. Their immune responses entail recognition of pathogen patterns, activation of defense mechanisms, and accumulation of various antimicrobial compounds. Eugenol, abundant in basil, has antibacterial properties and enhances plant resistance to viruses. However, its priming effects on biotrophic pathogens remain unclear. Thus, we investigated whether eugenol and basil essential oils could prime Arabidopsis thaliana immunity against the hemi-biotroph Pseudomonas syringae pv. maculicola (Psm) MAFF302723. Our study revealed that both eugenol and basil essential oils functioned as priming agents, mitigating disease symptoms upon Psm infection. This priming effect occurred via NPR1-dependent but salicylic acid-independent signaling. Moreover, our gene expression analysis suggested that priming might influence jasmonic acid/ethylene signaling. These findings underscore the potential of employing natural compounds such as basil essential oil to bolster plant immune responses in sustainable agricultural practices.

丁香酚和罗勒精油是增强拟南芥免疫反应的启动剂。
植物作为无柄生物,必须适应环境变化,抵御生物压力,包括病原体的侵袭。它们的免疫反应包括识别病原体模式、激活防御机制和积累各种抗菌化合物。罗勒中含量丰富的丁香酚具有抗菌特性,并能增强植物对病毒的抵抗力。然而,它对生物营养型病原体的引诱作用仍不清楚。因此,我们研究了丁香酚和罗勒精油是否能增强拟南芥对半生物营养型病原体 Pseudomonas syringae pv. maculicola (Psm) MAFF302723 的免疫力。我们的研究发现,丁香酚和罗勒精油都能作为启动剂,减轻拟南芥感染 Psm 后的疾病症状。这种启动效应是通过依赖 NPR1 但不依赖水杨酸的信号传导产生的。此外,我们的基因表达分析表明,诱导作用可能会影响茉莉酸/乙烯信号转导。这些发现强调了在可持续农业实践中利用罗勒精油等天然化合物增强植物免疫反应的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信