Temitope Orimolade, Ngoc-Tram Le, Lyle Trimble, Bandaru Ramarao, Sitaraman Krishnan
{"title":"Light scattering study of algal floc growth and structure: alum <i>vs.</i> polymeric plant-derived flocculant.","authors":"Temitope Orimolade, Ngoc-Tram Le, Lyle Trimble, Bandaru Ramarao, Sitaraman Krishnan","doi":"10.1039/d4sm00837e","DOIUrl":null,"url":null,"abstract":"<p><p>The flocculation dynamics of <i>Microcystis aeruginosa</i> algal cultures using alum and aqueous <i>Moringa oleifera</i> seed extracts as flocculants were analyzed through light scattering and fractal analysis. Floc growth in continuously stirred <i>M. aeruginosa</i> suspensions, with cell densities ranging from 200 to 800 μg L<sup>-1</sup> chlorophyll <i>a</i> (Chl <i>a</i>), exhibited distinct patterns in fractal dimension (<i>d</i><sub>F</sub>) evolution relative to floc size: a smooth, monotonic increase; stochastic increase; and stabilization or leveling off. <i>d</i><sub>F</sub> values ranged from 1.3 to 2.6, with floc diameters (<i>D</i><sub>4,3</sub> volume-weighted mean) spanning 30 to 300 μm. Alum (0.1 to 0.4 g L<sup>-1</sup>) induced fast diffusion-limited flocculation, initially producing lower <i>d</i><sub>F</sub> values, which progressively increased due to structural rearrangement at a slower rate. In contrast, at sufficiently high concentrations (0.1 to 0.2 g L<sup>-1</sup> BSA equivalent), <i>M. oleifera</i> seed proteins facilitated stable, high <i>d</i><sub>F</sub> ≈ 2.0 early on, evidently through patch charge interactions. Flocs formed with alum were prone to shear-induced breakage, limiting both their size and stability, whereas <i>M. oleifera</i> extract produced larger, more stable flocs with greater resilience to shear due to robust particle network formation by the polymer. Both flocculants effectively treated 800 μg L<sup>-1</sup> Chl <i>a M. aeruginosa</i> suspensions, but <i>M. oleifera</i> extract demonstrated better performance in terms of floc size at similar mass concentrations. These findings highlight the potential of <i>Moringa</i> seed extract as a sustainable and effective alternative to conventional flocculants like alum, offering insights into their mechanisms and performance in flocculation processes.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm00837e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The flocculation dynamics of Microcystis aeruginosa algal cultures using alum and aqueous Moringa oleifera seed extracts as flocculants were analyzed through light scattering and fractal analysis. Floc growth in continuously stirred M. aeruginosa suspensions, with cell densities ranging from 200 to 800 μg L-1 chlorophyll a (Chl a), exhibited distinct patterns in fractal dimension (dF) evolution relative to floc size: a smooth, monotonic increase; stochastic increase; and stabilization or leveling off. dF values ranged from 1.3 to 2.6, with floc diameters (D4,3 volume-weighted mean) spanning 30 to 300 μm. Alum (0.1 to 0.4 g L-1) induced fast diffusion-limited flocculation, initially producing lower dF values, which progressively increased due to structural rearrangement at a slower rate. In contrast, at sufficiently high concentrations (0.1 to 0.2 g L-1 BSA equivalent), M. oleifera seed proteins facilitated stable, high dF ≈ 2.0 early on, evidently through patch charge interactions. Flocs formed with alum were prone to shear-induced breakage, limiting both their size and stability, whereas M. oleifera extract produced larger, more stable flocs with greater resilience to shear due to robust particle network formation by the polymer. Both flocculants effectively treated 800 μg L-1 Chl a M. aeruginosa suspensions, but M. oleifera extract demonstrated better performance in terms of floc size at similar mass concentrations. These findings highlight the potential of Moringa seed extract as a sustainable and effective alternative to conventional flocculants like alum, offering insights into their mechanisms and performance in flocculation processes.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.