{"title":"Recent Advances in NIR-Switchable Multi-Redox Systems Based on Organic Molecules.","authors":"Takashi Harimoto, Yusuke Ishigaki","doi":"10.1002/chem.202403273","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, near-infrared (NIR) dyes, exhibiting absorption in the NIR region (750-2500 nm), have been applied to various optical applications such as security marking, photovoltaic cells and chemotherapy of deep tissues in vivo. Electrochromic systems capable of switching NIR absorption are attractive from the viewpoint of applications for material and life science, and thus several examples have been reported to date. The development of organic-based materials is needed to reduce the environmental impact and improve biocompatibility, however, the switching of NIR absorption based on redox interconversion is still a challenging issue regarding reversibility and durability during interconversion. To overcome this potential instability, several studies on organic electrochromic systems that allow ON/OFF switching of NIR absorption have been developed in recent years. In this review, we focus on redox-active well-defined small molecules that enable ON/OFF switching of NIR absorption, and present recent studies on their intrinsic electrochemical and spectroscopic properties and/or structural characterization of their charged states. We also address more sophisticated electrochromic systems that can modulate their properties in response to external stimuli such as light, heat, and electric potential.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202403273"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202403273","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, near-infrared (NIR) dyes, exhibiting absorption in the NIR region (750-2500 nm), have been applied to various optical applications such as security marking, photovoltaic cells and chemotherapy of deep tissues in vivo. Electrochromic systems capable of switching NIR absorption are attractive from the viewpoint of applications for material and life science, and thus several examples have been reported to date. The development of organic-based materials is needed to reduce the environmental impact and improve biocompatibility, however, the switching of NIR absorption based on redox interconversion is still a challenging issue regarding reversibility and durability during interconversion. To overcome this potential instability, several studies on organic electrochromic systems that allow ON/OFF switching of NIR absorption have been developed in recent years. In this review, we focus on redox-active well-defined small molecules that enable ON/OFF switching of NIR absorption, and present recent studies on their intrinsic electrochemical and spectroscopic properties and/or structural characterization of their charged states. We also address more sophisticated electrochromic systems that can modulate their properties in response to external stimuli such as light, heat, and electric potential.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.