Molecular Chain Rearrangement of Natural Cellulose-Based Artificial Interphase for Ultra-Stable Zn Metal Anodes.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jizhen Wang, Long Jiao, Chao Yi, Hongyuan Bai, Qiaoyun Liu, Yusen Fu, Jiajia Liu, Chuang Wang, Yechen Lei, Tian Zhang, Jiaqi Wen, Leixin Yang, Dengkun Shu, Shuo Yang, Chenyang Li, Huan Li, Wenjun Zhang, Bowen Cheng
{"title":"Molecular Chain Rearrangement of Natural Cellulose-Based Artificial Interphase for Ultra-Stable Zn Metal Anodes.","authors":"Jizhen Wang, Long Jiao, Chao Yi, Hongyuan Bai, Qiaoyun Liu, Yusen Fu, Jiajia Liu, Chuang Wang, Yechen Lei, Tian Zhang, Jiaqi Wen, Leixin Yang, Dengkun Shu, Shuo Yang, Chenyang Li, Huan Li, Wenjun Zhang, Bowen Cheng","doi":"10.1002/anie.202418992","DOIUrl":null,"url":null,"abstract":"<p><p>The unstable electrolyte-anode interface, plagued by parasitic side reactions and uncontrollable dendrite growth, severely hampers the practical implementation of aqueous zinc-ion batteries. To address these challenges, we developed a regenerated cellulose-based artificial interphase with synergistically optimized structure and surface chemistry on the Zn anode (RC@Zn), using a facile molecular chain rearrangement strategy. This RC interphase features a drastically increased amorphous region and more exposed active hydroxyl groups, facilitating rapid Zn<sup>2+</sup> diffusion and homogeneous Zn<sup>2+</sup> interface distribution, thereby enabling dendrite-free Zn deposition. Additionally, the compact texture and abundant negatively charged surface of the RC interphase effectively shield water molecules and harmful anions, completely preventing H<sub>2</sub> evolution and Zn corrosion. The superior mechanical strength and adhesion of the RC interphase also accommodate the substantial volume changes of Zn anodes even under deep cycling conditions. Consequently, the RC@Zn electrode demonstrates an outstanding cycling lifespan of over 8000 hours at a high current density of 10 mA cm<sup>-2</sup>. Significantly, the electrode maintains stable cycling even at a 90 % depth of discharge and ensures stable operation of full cells with a low negative/positive capacity ratio of 1.6. This study provides new solution to construct highly stable and deep cycling Zn metal anodes through interface engineering.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202418992"},"PeriodicalIF":16.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202418992","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The unstable electrolyte-anode interface, plagued by parasitic side reactions and uncontrollable dendrite growth, severely hampers the practical implementation of aqueous zinc-ion batteries. To address these challenges, we developed a regenerated cellulose-based artificial interphase with synergistically optimized structure and surface chemistry on the Zn anode (RC@Zn), using a facile molecular chain rearrangement strategy. This RC interphase features a drastically increased amorphous region and more exposed active hydroxyl groups, facilitating rapid Zn2+ diffusion and homogeneous Zn2+ interface distribution, thereby enabling dendrite-free Zn deposition. Additionally, the compact texture and abundant negatively charged surface of the RC interphase effectively shield water molecules and harmful anions, completely preventing H2 evolution and Zn corrosion. The superior mechanical strength and adhesion of the RC interphase also accommodate the substantial volume changes of Zn anodes even under deep cycling conditions. Consequently, the RC@Zn electrode demonstrates an outstanding cycling lifespan of over 8000 hours at a high current density of 10 mA cm-2. Significantly, the electrode maintains stable cycling even at a 90 % depth of discharge and ensures stable operation of full cells with a low negative/positive capacity ratio of 1.6. This study provides new solution to construct highly stable and deep cycling Zn metal anodes through interface engineering.

用于超稳定锌金属阳极的天然纤维素基人工中间膜的分子链重排。
不稳定的电解质-阳极界面受到寄生副反应和不可控制的枝晶生长的困扰,严重阻碍了锌离子水电池的实际应用。为了应对这些挑战,我们采用简便的分子链重排策略,在锌阳极上开发了一种具有协同优化结构和表面化学性质的再生纤维素基人工中间相(RC@Zn)。这种 RC 中间相具有大幅增加的无定形区和更多暴露的活性羟基,有利于 Zn2+ 的快速扩散和均匀的 Zn2+ 界面分布,从而实现无枝晶的锌沉积。此外,RC 相间层的紧密质地和丰富的带负电表面可有效屏蔽水分子和有害阴离子,完全防止 H2 演化和锌腐蚀。即使在深度循环条件下,RC 相间层出色的机械强度和附着力也能适应锌阳极的巨大体积变化。因此,在 10 mA cm-2 的高电流密度下,RC@Zn 电极的循环寿命超过 8000 小时。值得注意的是,即使在放电深度达到 90% 的情况下,该电极仍能保持稳定的循环,并确保负极/正极容量比低至 1.6 的全电池的稳定运行。这项研究为通过界面工程构建高度稳定和深度循环的锌金属阳极提供了新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信