Biomimetic Elastic Single-Atom Protrusions Enhance Ammonia Electrosynthesis

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuntong Sun, Yin Huang, Fanglei Yao, Prof. Meng Tian, Prof. Jin Wang, Prof. Wenjun Fan, Prof. Junwu Zhu, Prof. Jong-Min Lee
{"title":"Biomimetic Elastic Single-Atom Protrusions Enhance Ammonia Electrosynthesis","authors":"Yuntong Sun,&nbsp;Yin Huang,&nbsp;Fanglei Yao,&nbsp;Prof. Meng Tian,&nbsp;Prof. Jin Wang,&nbsp;Prof. Wenjun Fan,&nbsp;Prof. Junwu Zhu,&nbsp;Prof. Jong-Min Lee","doi":"10.1002/anie.202418095","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic nitrogen (N<sub>2</sub>) reduction reaction (eNRR) is a promising route for sustainable ammonia (NH<sub>3</sub>) generation, but the eNRR efficiency is dramatically impeded by sluggish reaction kinetics. Herein, inspired by the dynamic extension-contraction of sea anemone tentacles in response to environmental changes, we propose a biomimetic elastic Mo single-atom protrusion on vanadium oxide support (pSA Mo/VOH) electrocatalyst featuring a symmetry-breaking Mo site and an elastic Mo−O<sub>4</sub> pyramid for efficient eNRR. In situ spectroscopy and theoretical calculations reveal that the protruding Mo-induced symmetry-breaking structure optimizes the d-electron filling of Mo, enhancing the back-donation to the π* antibonding orbital, effectively polarizing the N≡N bond and reducing the barrier from *N<sub>2</sub> to *N<sub>2</sub>H. Notably, the elastic Mo−O<sub>4</sub> pyramidal structure of pSA Mo provides a dynamic Mo−O microenvironment during continuous eNRR processes. This optimizes the electronic structure of the Mo sites based on different reaction intermediates, enhancing the adsorption of various N intermediates and maintaining low barriers throughout the six-step hydrogenation process. Consequently, the elastic pSA Mo/VOH exhibits an excellent NH<sub>3</sub> yield rate of 50.71±1.12 μg h<sup>−1</sup> mg<sup>−1</sup> and a Faradaic efficiency of 35.38±1.03 %, outperforming most electrocatalysts.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 6","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202418095","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic nitrogen (N2) reduction reaction (eNRR) is a promising route for sustainable ammonia (NH3) generation, but the eNRR efficiency is dramatically impeded by sluggish reaction kinetics. Herein, inspired by the dynamic extension-contraction of sea anemone tentacles in response to environmental changes, we propose a biomimetic elastic Mo single-atom protrusion on vanadium oxide support (pSA Mo/VOH) electrocatalyst featuring a symmetry-breaking Mo site and an elastic Mo−O4 pyramid for efficient eNRR. In situ spectroscopy and theoretical calculations reveal that the protruding Mo-induced symmetry-breaking structure optimizes the d-electron filling of Mo, enhancing the back-donation to the π* antibonding orbital, effectively polarizing the N≡N bond and reducing the barrier from *N2 to *N2H. Notably, the elastic Mo−O4 pyramidal structure of pSA Mo provides a dynamic Mo−O microenvironment during continuous eNRR processes. This optimizes the electronic structure of the Mo sites based on different reaction intermediates, enhancing the adsorption of various N intermediates and maintaining low barriers throughout the six-step hydrogenation process. Consequently, the elastic pSA Mo/VOH exhibits an excellent NH3 yield rate of 50.71±1.12 μg h−1 mg−1 and a Faradaic efficiency of 35.38±1.03 %, outperforming most electrocatalysts.

Abstract Image

仿生弹性单原子突起增强了氨的电合成。
电催化氮气(N2)还原反应(eNRR)是可持续生成氨气(NH3)的一条前景广阔的途径,但反应动力学迟缓极大地阻碍了 eNRR 的效率。在此,我们受海葵触手随环境变化而动态伸缩的启发,提出了一种仿生弹性钼单原子突起氧化钒载体(pSA Mo/VOH)电催化剂,该催化剂具有打破对称性的钼位点和弹性钼-O4金字塔,可实现高效的 eNRR。原位光谱和理论计算显示,突出的钼诱导对称性破缺结构优化了钼的 d 电子填充,增强了对π*反键轨道的反向捐赠,有效地极化了 N≡N 键,降低了从 *N2 到 *N2H 的势垒。值得注意的是,在连续的 eNRR 过程中,pSA Mo 的弹性 Mo-O4 金字塔结构提供了一个动态的 Mo-O 微环境。这就根据不同的反应中间产物优化了钼位点的电子结构,增强了对各种 N 中间产物的吸附,并在整个六步氢化过程中保持了较低的壁垒。因此,弹性 pSA Mo/VOH 的 NH3 产率高达 50.71 ± 1.12 μg h-1 mg-1,法拉第效率为 35.38 ± 1.03%,优于大多数电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信