An Efficient Cathode Catalyst for Rechargeable Zinc-air Batteries based on the Derivatives of MXene@ZIFs.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2024-11-05 DOI:10.1002/cssc.202401200
Fei Zhao, Li Kang, Jilan Long, Keyu Chen, Simeng Ding
{"title":"An Efficient Cathode Catalyst for Rechargeable Zinc-air Batteries based on the Derivatives of MXene@ZIFs.","authors":"Fei Zhao, Li Kang, Jilan Long, Keyu Chen, Simeng Ding","doi":"10.1002/cssc.202401200","DOIUrl":null,"url":null,"abstract":"<p><p>Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial processes at the cathode of zinc-air batteries. Developing highly efficient and durable electrocatalysts at the air cathode is significant for the practical application of rechargeable zinc-air batteries. Herein, N-doped layered MX containing Co<sub>2</sub>P/Ni<sub>2</sub>P nanoparticles is synthesized by growing CoNi-ZIF on the surface and interlayers of the two-dimensional material MXene (Ti<sub>2</sub>C<sub>3</sub>) followed by phosphating calcination. The growth of CoNi-ZIF on the surface of MXene results in the attenuation of high-temperature structural damage of MXene, which in turn leads to the formation of Co<sub>2</sub>P/Ni<sub>2</sub>P@MX with a hierarchical configuration, higher electron conductivity, and abundant active sites. The optimized Co<sub>2</sub>P/Ni<sub>2</sub>P@MX achieves a half-wave potential of 0.85 V for the ORR and an overpotential of 345 mV for the OER. In addition, DFT calculations were adopted to investigate the mechanism at the atomic and molecular levels. The liquid zinc-air battery with Co<sub>2</sub>P/Ni<sub>2</sub>P@MX as the cathode exhibits a specific capacity of 783.7 mAh g<sup>-1</sup> and exceeds 280 h (840 cycles) cycle stability, superior to zinc-air batteries constructed by the cathode of commercial Pt/C+RuO<sub>2</sub> and other previous works. Furthermore, a solid-state battery synthesized with Co<sub>2</sub>P/Ni<sub>2</sub>P@MX as the cathode exhibits stable cycle performance (154 h/462 cycles).</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401200","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial processes at the cathode of zinc-air batteries. Developing highly efficient and durable electrocatalysts at the air cathode is significant for the practical application of rechargeable zinc-air batteries. Herein, N-doped layered MX containing Co2P/Ni2P nanoparticles is synthesized by growing CoNi-ZIF on the surface and interlayers of the two-dimensional material MXene (Ti2C3) followed by phosphating calcination. The growth of CoNi-ZIF on the surface of MXene results in the attenuation of high-temperature structural damage of MXene, which in turn leads to the formation of Co2P/Ni2P@MX with a hierarchical configuration, higher electron conductivity, and abundant active sites. The optimized Co2P/Ni2P@MX achieves a half-wave potential of 0.85 V for the ORR and an overpotential of 345 mV for the OER. In addition, DFT calculations were adopted to investigate the mechanism at the atomic and molecular levels. The liquid zinc-air battery with Co2P/Ni2P@MX as the cathode exhibits a specific capacity of 783.7 mAh g-1 and exceeds 280 h (840 cycles) cycle stability, superior to zinc-air batteries constructed by the cathode of commercial Pt/C+RuO2 and other previous works. Furthermore, a solid-state battery synthesized with Co2P/Ni2P@MX as the cathode exhibits stable cycle performance (154 h/462 cycles).

基于 MXene@ZIFs 衍生物的可充电锌-空气电池高效阴极催化剂。
氧还原反应(ORR)和氧进化反应(OER)是锌-空气电池阴极的关键过程。开发高效耐用的空气阴极电催化剂对于锌-空气充电电池的实际应用意义重大。本文通过在二维材料 MXene(Ti2C3)的表面和夹层上生长 CoNi-ZIF 并进行磷化煅烧,合成了含有 Co2P/Ni2P 纳米颗粒的 N 掺杂层状 MX。CoNi-ZIF 在 MXene 表面的生长减弱了 MXene 的高温结构损伤,进而形成了具有分层构型、更高电子传导性和丰富活性位点的 Co2P/Ni2P@MX。优化后的 Co2P/Ni2P@MX 在 ORR 中的半波电位为 0.85 V,在 OER 中的过电位为 345 mV。此外,还采用 DFT 计算研究了原子和分子水平的机理。以 Co2P/Ni2P@MX 为阴极的液态锌-空气电池的比容量为 783.7 mAh g-1,循环稳定性超过 280 h(840 次),优于以商用 Pt/C+RuO2 为阴极构建的锌-空气电池和其他先前的研究成果。此外,用 Co2P/Ni2P@MX 作为阴极合成的固态电池具有稳定的循环性能(154 小时/462 次循环)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信