Stefan Paula, Farnaz Jahani, Dina Almahmodi, Sydni Sobota, Shiffany Devaraja, Nicholas S O'Brien, Kelly A Young, Kate Prichard, Adam McCluskey
{"title":"Quinoline- and pyrimidine-based allosteric modulators of the sarco/endoplasmic reticulum calcium ATPase.","authors":"Stefan Paula, Farnaz Jahani, Dina Almahmodi, Sydni Sobota, Shiffany Devaraja, Nicholas S O'Brien, Kelly A Young, Kate Prichard, Adam McCluskey","doi":"10.1002/cmdc.202400763","DOIUrl":null,"url":null,"abstract":"<p><p>Small-molecule allosteric activators of the enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA) hold promise as novel experimental tools to manipulate intracellular calcium concentrations and as therapeutic agents to treat medical conditions associated with elevated cytosolic calcium levels. Here, we synthesized and characterized 20 analogs of the known allosteric SERCA activator CDN1163 and tested their ability to stimulate SERCA activity. The structures of the compounds varied in the alkyl group of the parent scaffold's ether moiety as well as in the composition of the nitrogenous aromatic ring system. The most active compounds exhibited potencies in the sub-micromolar range while increasing enzyme activity by more than 25%. The observed structure-activity relationships indicated that bulky alkyl groups in the ether moiety along with a quinoline ring methyl substituent were beneficial for activity. Replacement of the quinoline by a pyrimidine ring system reduced activity. To conceive a potential mechanism of action, we generated a molecular model of the transition state of SERCA when undergoing the rate-limiting step of its catalytic cycle. Subsequent blind docking with CDN1163 identified a high-affinity binding site close to the enzyme's ATP binding pocket, suggesting that the activators may accelerate SERCA's catalytic cycle by aiding in ATP binding and positioning.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400763","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Small-molecule allosteric activators of the enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA) hold promise as novel experimental tools to manipulate intracellular calcium concentrations and as therapeutic agents to treat medical conditions associated with elevated cytosolic calcium levels. Here, we synthesized and characterized 20 analogs of the known allosteric SERCA activator CDN1163 and tested their ability to stimulate SERCA activity. The structures of the compounds varied in the alkyl group of the parent scaffold's ether moiety as well as in the composition of the nitrogenous aromatic ring system. The most active compounds exhibited potencies in the sub-micromolar range while increasing enzyme activity by more than 25%. The observed structure-activity relationships indicated that bulky alkyl groups in the ether moiety along with a quinoline ring methyl substituent were beneficial for activity. Replacement of the quinoline by a pyrimidine ring system reduced activity. To conceive a potential mechanism of action, we generated a molecular model of the transition state of SERCA when undergoing the rate-limiting step of its catalytic cycle. Subsequent blind docking with CDN1163 identified a high-affinity binding site close to the enzyme's ATP binding pocket, suggesting that the activators may accelerate SERCA's catalytic cycle by aiding in ATP binding and positioning.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.