Seungmin Kim, Youbin Kang, Hyunku Shin, Eun Byul Lee, Byung-Joo Ham, Yeonho Choi
{"title":"Liquid Biopsy-Based Detection and Response Prediction for Depression.","authors":"Seungmin Kim, Youbin Kang, Hyunku Shin, Eun Byul Lee, Byung-Joo Ham, Yeonho Choi","doi":"10.1021/acsnano.4c08233","DOIUrl":null,"url":null,"abstract":"<p><p>Proactively predicting antidepressant treatment response before medication failures is crucial, as it reduces unsuccessful attempts and facilitates the development of personalized therapeutic strategies, ultimately enhancing treatment efficacy. The current decision-making process, which heavily depends on subjective indicators, underscores the need for an objective, indicator-based approach. This study developed a method for detecting depression and predicting treatment response through deep learning-based spectroscopic analysis of extracellular vesicles (EVs) from plasma. EVs were isolated from the plasma of both nondepressed and depressed groups, followed by Raman signal acquisition, which was used for AI algorithm development. The algorithm successfully distinguished depression patients from healthy individuals and those with panic disorder, achieving an AUC accuracy of 0.95. This demonstrates the model's capability to selectively diagnose depression within a nondepressed group, including those with other mental health disorders. Furthermore, the algorithm identified depression-diagnosed patients likely to respond to antidepressants, classifying responders and nonresponders with an AUC accuracy of 0.91. To establish a diagnostic foundation, the algorithm applied explainable AI (XAI), enabling personalized medicine for companion diagnostics and highlighting its potential for the development of liquid biopsy-based mental disorder diagnosis.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"32498-32507"},"PeriodicalIF":16.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c08233","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Proactively predicting antidepressant treatment response before medication failures is crucial, as it reduces unsuccessful attempts and facilitates the development of personalized therapeutic strategies, ultimately enhancing treatment efficacy. The current decision-making process, which heavily depends on subjective indicators, underscores the need for an objective, indicator-based approach. This study developed a method for detecting depression and predicting treatment response through deep learning-based spectroscopic analysis of extracellular vesicles (EVs) from plasma. EVs were isolated from the plasma of both nondepressed and depressed groups, followed by Raman signal acquisition, which was used for AI algorithm development. The algorithm successfully distinguished depression patients from healthy individuals and those with panic disorder, achieving an AUC accuracy of 0.95. This demonstrates the model's capability to selectively diagnose depression within a nondepressed group, including those with other mental health disorders. Furthermore, the algorithm identified depression-diagnosed patients likely to respond to antidepressants, classifying responders and nonresponders with an AUC accuracy of 0.91. To establish a diagnostic foundation, the algorithm applied explainable AI (XAI), enabling personalized medicine for companion diagnostics and highlighting its potential for the development of liquid biopsy-based mental disorder diagnosis.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.