Automated production of nerve repair constructs containing endothelial cell tube-like structures.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Poppy O Smith, Guanbingxue Huang, Kate Devries, Showan N Nazhat, James B Phillips
{"title":"Automated production of nerve repair constructs containing endothelial cell tube-like structures.","authors":"Poppy O Smith, Guanbingxue Huang, Kate Devries, Showan N Nazhat, James B Phillips","doi":"10.1088/1758-5090/ad8efd","DOIUrl":null,"url":null,"abstract":"<p><p>Engineered neural tissue (EngNT) is a stabilised aligned cellular hydrogel that offers a potential alternative to the nerve autograft for the treatment of severe peripheral nerve injury. This work aimed to automate the production of EngNT, to improve the feasibility of scalable manufacture for clinical translation. Endothelial cells were used as the cellular component of the EngNT, with the formation of endothelial cell tube-like structures mimicking the polarised vascular structures formed early on in the natural regenerative process. Gel aspiration-ejection for the production of EngNT was automated by integrating a syringe pump with a robotic positioning system, using software coded in Python to control both devices. Having established the production method and tested mechanical properties, the EngNT containing human umbilical vein endothelial cells (EngNT-HUVEC) was characterised in terms of viability and alignment, compatibility with neurite outgrowth from rat dorsal root ganglion neurons and formation of endothelial cell networks<i>in vitro</i>. EngNT-HUVEC manufactured using the automated system contained viable and aligned endothelial cells, which developed into a network of multinucleated endothelial cell tube-like structures inside the constructs and an outer layer of endothelialisation. The EngNT-HUVEC constructs were made in various sizes within minutes. Constructs provided support and guidance to regenerating neurites<i>in vitro</i>. This work automated the formation of EngNT, facilitating high throughput manufacture at scale. The formation of endothelial cell tube-like structures within stabilised hydrogels provides an engineered tissue with potential for use in nerve repair.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad8efd","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Engineered neural tissue (EngNT) is a stabilised aligned cellular hydrogel that offers a potential alternative to the nerve autograft for the treatment of severe peripheral nerve injury. This work aimed to automate the production of EngNT, to improve the feasibility of scalable manufacture for clinical translation. Endothelial cells were used as the cellular component of the EngNT, with the formation of endothelial cell tube-like structures mimicking the polarised vascular structures formed early on in the natural regenerative process. Gel aspiration-ejection for the production of EngNT was automated by integrating a syringe pump with a robotic positioning system, using software coded in Python to control both devices. Having established the production method and tested mechanical properties, the EngNT containing human umbilical vein endothelial cells (EngNT-HUVEC) was characterised in terms of viability and alignment, compatibility with neurite outgrowth from rat dorsal root ganglion neurons and formation of endothelial cell networksin vitro. EngNT-HUVEC manufactured using the automated system contained viable and aligned endothelial cells, which developed into a network of multinucleated endothelial cell tube-like structures inside the constructs and an outer layer of endothelialisation. The EngNT-HUVEC constructs were made in various sizes within minutes. Constructs provided support and guidance to regenerating neuritesin vitro. This work automated the formation of EngNT, facilitating high throughput manufacture at scale. The formation of endothelial cell tube-like structures within stabilised hydrogels provides an engineered tissue with potential for use in nerve repair.

自动化生产含有内皮细胞管状结构的神经修复构建体。
工程神经组织(EngNT)是一种稳定排列的细胞水凝胶,可替代神经自体移植治疗严重的周围神经损伤。这项工作旨在实现 EngNT 的自动化生产,以提高临床转化的可扩展性。内皮细胞被用作细胞成分,内皮细胞管状结构的形成模仿了自然再生过程早期形成的极化血管结构。生产 EngNT 的凝胶抽吸-注射(GAE)是通过整合注射泵和机器人定位系统实现自动化的,使用 Python 编码的软件来控制这两个设备。在确定了生产方法并测试了机械性能后,对含有人脐静脉内皮细胞(EngNT-HUVEC)的 EngNT 进行了活力和排列、与大鼠背根神经节神经元生长的兼容性以及体外内皮细胞网络的形成等方面的表征。使用自动化系统制造的 EngNT-HUVEC 包含有活力和排列整齐的内皮细胞,构建体内部有多核内皮细胞管状结构网络,外层有内皮化。EngNT-HUVEC 构建体可在几分钟内制成各种尺寸,并为体外再生神经元提供支持和引导。这项工作实现了 EngNT 形成的自动化,有助于大规模高通量生产。在稳定的水凝胶中形成内皮细胞管状结构,提供了一种有可能用于神经修复的工程组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信