Hongyu Li , Yuying Ouyang , Haoran Lv , Hanzhi Liang , Siweier Luo , Yating Zhang , Haiping Mao , Tianfeng Chen , Wei Chen , Yiming Zhou , Qinghua Liu
{"title":"Nanoparticle-mediated Klotho gene therapy prevents acute kidney injury to chronic kidney disease transition through regulating PPARα signaling in renal tubular epithelial cells","authors":"Hongyu Li , Yuying Ouyang , Haoran Lv , Hanzhi Liang , Siweier Luo , Yating Zhang , Haiping Mao , Tianfeng Chen , Wei Chen , Yiming Zhou , Qinghua Liu","doi":"10.1016/j.biomaterials.2024.122926","DOIUrl":null,"url":null,"abstract":"<div><div>Klotho is an anti-aging protein produced primarily by tubular epithelial cells (TECs). Down-regulated expression of Klotho in injured TECs plays a key pathogenic role in promoting acute kidney injury (AKI) to chronic kidney disease (CKD) transition, yet therapeutic approaches targeting the restoration of renal Klotho levels remain challenging for clinical application. Here, we synthesize polydopamine-polyethylenimine-<span>l</span>-serine-<em>Klotho</em> plasmid nanoparticles (PPSK NPs), which can safely and selectively deliver the <em>Klotho</em> gene to the injured TECs through binding kidney injury molecule-1 and maintain the expression of Klotho protein. <em>In vitro</em>, PPSK NPs effectively reduce the hypoxia-reoxygenation-induced reactive oxygen species production and fibrotic gene expression. In the unilateral ischemia-reperfusion injury- and folic acid-induced AKI-CKD transition mouse models, a single low-dose injection of PPSK NPs is sufficient to preserve the normal kidney architecture and prevent renal fibrosis. Mechanismly, the protective effect of PPSK NPs relies on upregulating a key molecule peroxisome proliferator-activated receptor alpha (PPARα) via the inhibition of p38 and JNK phosphorylation, which in turn improves tubular fatty acid beta-oxidation and reduces renal lipid accumulation, thereby protecting against kidney fibrosis. In conclusion, our results highlight the translational potential of nanoparticle-based <em>Klotho</em> gene therapy in preventing the AKI-CKD transition.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"315 ","pages":"Article 122926"},"PeriodicalIF":12.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961224004605","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Klotho is an anti-aging protein produced primarily by tubular epithelial cells (TECs). Down-regulated expression of Klotho in injured TECs plays a key pathogenic role in promoting acute kidney injury (AKI) to chronic kidney disease (CKD) transition, yet therapeutic approaches targeting the restoration of renal Klotho levels remain challenging for clinical application. Here, we synthesize polydopamine-polyethylenimine-l-serine-Klotho plasmid nanoparticles (PPSK NPs), which can safely and selectively deliver the Klotho gene to the injured TECs through binding kidney injury molecule-1 and maintain the expression of Klotho protein. In vitro, PPSK NPs effectively reduce the hypoxia-reoxygenation-induced reactive oxygen species production and fibrotic gene expression. In the unilateral ischemia-reperfusion injury- and folic acid-induced AKI-CKD transition mouse models, a single low-dose injection of PPSK NPs is sufficient to preserve the normal kidney architecture and prevent renal fibrosis. Mechanismly, the protective effect of PPSK NPs relies on upregulating a key molecule peroxisome proliferator-activated receptor alpha (PPARα) via the inhibition of p38 and JNK phosphorylation, which in turn improves tubular fatty acid beta-oxidation and reduces renal lipid accumulation, thereby protecting against kidney fibrosis. In conclusion, our results highlight the translational potential of nanoparticle-based Klotho gene therapy in preventing the AKI-CKD transition.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.