Greenly Synthesized Conducting Polymer Nanotunnels with Metal-Hydroxide Nanobundles in Single Dais for Unmitigated Water Oxidation.

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Kuppusamy Rajan, Dhanasingh Thiruvengadam, Krishnan Umapathy, Murugan Muthamildevi, Muthukumaran Sangamithirai, Jayaraman Jayabharathi, Manoharan Padmavathy
{"title":"Greenly Synthesized Conducting Polymer Nanotunnels with Metal-Hydroxide Nanobundles in Single Dais for Unmitigated Water Oxidation.","authors":"Kuppusamy Rajan, Dhanasingh Thiruvengadam, Krishnan Umapathy, Murugan Muthamildevi, Muthukumaran Sangamithirai, Jayaraman Jayabharathi, Manoharan Padmavathy","doi":"10.1021/acs.langmuir.4c02586","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical water splitting required efficient electrocatalysts to produce clean hydrogen fuel. Here, we adopted greenway coprecipitation (GC) method to synthesize conducting polymer (CP) nanotunnel network affixed with luminal-abluminal CoNi hydroxides (GC-CoNiCP), namely, GC-Co<sub>1</sub>Ni<sub>2</sub>CP, GC-Co<sub>1.5</sub>Ni<sub>1.5</sub>CP, and GC-Co<sub>2</sub>Ni<sub>1</sub>CP. The active catalyst, GC-Co<sub>2</sub>Ni<sub>1</sub>CP/GC, has low oxygen evolution reaction (OER) overpotential (307 mV) and a smaller Tafel slope (47 mV dec<sup>-1</sup>) than IrO<sub>2</sub> (125 mV dec<sup>-1</sup>). The electrochemical active surface area (EASA) normalized linear sweep voltammetry (LSV) curve exhibited outstanding intrinsic activity of GC-Co<sub>2</sub>Ni<sub>1</sub>CP, which required 285 mV to attain 10 mA cm<sup>-2</sup>. At 1.54 V, the estimated turnover frequency (TOF) of GC-Co<sub>2</sub>Ni<sub>1</sub>CP/GC (0.017337 s<sup>-1</sup>) was found to be 3-fold higher than that of IrO<sub>2</sub> (0.0014 s<sup>-1</sup>). Furthermore, the GC-Co<sub>2</sub>Ni<sub>1</sub>CP/NF consumed a very low overpotential (281 mV) with a small Tafel slope of 121 mV dec<sup>-1</sup>. The ultrastability of GC-Co<sub>2</sub>Ni<sub>1</sub>CP for industrial application was confirmed by durability at 10 and 100 mA cm<sup>-2</sup> for the OER (GC/NF-8 h, 2.0%/100 h, 2.2%) and overall water splitting (100 h, 3.8%), which implies that GC-Co<sub>2</sub>Ni<sub>1</sub>CP had adequate kinetics to address the elevated rates of water oxidation. The effect of pH and addition of tetramethylammonium cation (TMA<sup>+</sup>) reveal that GC-Co<sub>2</sub>Ni<sub>1</sub>CP follows the lattice oxygen mechanism (LOM). The solar-powered water electrolysis at 1.55 V supports the efficacy of GC-Co<sub>2</sub>Ni<sub>1</sub>CP in the solar-to-hydrogen conversion. The environmental impact studies and solar-driven water electrolysis proved that GC-CoNiCP has excellent greenness and efficiency, respectively.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02586","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical water splitting required efficient electrocatalysts to produce clean hydrogen fuel. Here, we adopted greenway coprecipitation (GC) method to synthesize conducting polymer (CP) nanotunnel network affixed with luminal-abluminal CoNi hydroxides (GC-CoNiCP), namely, GC-Co1Ni2CP, GC-Co1.5Ni1.5CP, and GC-Co2Ni1CP. The active catalyst, GC-Co2Ni1CP/GC, has low oxygen evolution reaction (OER) overpotential (307 mV) and a smaller Tafel slope (47 mV dec-1) than IrO2 (125 mV dec-1). The electrochemical active surface area (EASA) normalized linear sweep voltammetry (LSV) curve exhibited outstanding intrinsic activity of GC-Co2Ni1CP, which required 285 mV to attain 10 mA cm-2. At 1.54 V, the estimated turnover frequency (TOF) of GC-Co2Ni1CP/GC (0.017337 s-1) was found to be 3-fold higher than that of IrO2 (0.0014 s-1). Furthermore, the GC-Co2Ni1CP/NF consumed a very low overpotential (281 mV) with a small Tafel slope of 121 mV dec-1. The ultrastability of GC-Co2Ni1CP for industrial application was confirmed by durability at 10 and 100 mA cm-2 for the OER (GC/NF-8 h, 2.0%/100 h, 2.2%) and overall water splitting (100 h, 3.8%), which implies that GC-Co2Ni1CP had adequate kinetics to address the elevated rates of water oxidation. The effect of pH and addition of tetramethylammonium cation (TMA+) reveal that GC-Co2Ni1CP follows the lattice oxygen mechanism (LOM). The solar-powered water electrolysis at 1.55 V supports the efficacy of GC-Co2Ni1CP in the solar-to-hydrogen conversion. The environmental impact studies and solar-driven water electrolysis proved that GC-CoNiCP has excellent greenness and efficiency, respectively.

Abstract Image

绿色合成的导电聚合物纳米隧洞与氢氧化金属纳米束,用于无缓和水氧化。
电化学水分离需要高效的电催化剂来生产清洁的氢燃料。在此,我们采用绿色通道共沉淀(GC)法合成了附着有腔体-腔体CoNi氢氧化物(GC-CoNiCP)的导电聚合物(CP)纳米通道网络,即GC-Co1Ni2CP、GC-Co1.5Ni1.5CP和GC-Co2Ni1CP。与 IrO2(125 mV dec-1)相比,活性催化剂 GC-Co2Ni1CP/GC 的氧进化反应(OER)过电位(307 mV)较低,塔菲尔斜率(47 mV dec-1)较小。电化学活性表面积(EASA)归一化线性扫描伏安法(LSV)曲线显示,GC-Co2Ni1CP 具有出色的内在活性,需要 285 mV 才能达到 10 mA cm-2。在 1.54 V 电压下,GC-Co2Ni1CP/GC 的估计周转频率(TOF)(0.017337 s-1)比 IrO2(0.0014 s-1)高出 3 倍。此外,GC-Co2Ni1CP/NF 消耗的过电位很低(281 mV),塔菲尔斜率很小,为 121 mV dec-1。GC-Co2Ni1CP 在 10 和 100 mA cm-2 下的 OER(GC/NF-8 h,2.0%/100 h,2.2%)和整体水分裂(100 h,3.8%)的耐久性证实了其在工业应用中的超稳定性,这意味着 GC-Co2Ni1CP 具有足够的动力学性能来解决水氧化率升高的问题。pH 值和添加四甲基铵阳离子(TMA+)的影响表明,GC-Co2Ni1CP 遵循晶格氧机制(LOM)。在 1.55 V 的电压下进行的太阳能水电解证明了 GC-Co2Ni1CP 在太阳能转化为氢气方面的功效。环境影响研究和太阳能驱动的水电解分别证明了 GC-CoNiCP 具有优异的绿色性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信