Ultrafast Na-Ion Storage in Amorphization Engineered Hollow Vanadium Oxide/MXene Nanohybrids for High-Performance Sodium-Ion Hybrid Capacitors

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jun Yuan, Duo Pan, Junxiang Chen, Yangjie Liu, Jiaqi Yu, Xiang Hu, Hongbing Zhan, Zhenhai Wen
{"title":"Ultrafast Na-Ion Storage in Amorphization Engineered Hollow Vanadium Oxide/MXene Nanohybrids for High-Performance Sodium-Ion Hybrid Capacitors","authors":"Jun Yuan, Duo Pan, Junxiang Chen, Yangjie Liu, Jiaqi Yu, Xiang Hu, Hongbing Zhan, Zhenhai Wen","doi":"10.1002/adma.202408923","DOIUrl":null,"url":null,"abstract":"Sodium ion hybrid capacitors (SIHCs) address the high power and energy requirements in energy storage devices but face significant challenges arising from the slow kinetics and cycling instability of the anode side. Introducing atomic disorder and employing structural engineering in anode materials proves to be effective strategies for achieving rapid charge storage. Here, it is demonstrated that N-doped MXene encapsulated amorphous vanadium oxide hollow spheres (VO<i><sub>x</sub></i>@N-MXene HSs) offer multidirectional open pathways and sufficient vacancies, enabling reversible and fast Na<sup>+</sup> insertion/extraction. Machine learning potentials, coupled with molecular simulation techniques, confirm the presence of more abundant pores within the amorphous vanadium oxide (VO<i><sub>x</sub></i>) structure. The simulation of the charging/discharging process elucidates the authentic reaction path and structural evolutions of the VO<i><sub>x</sub></i>@N-MXene HSs, providing sufficient insight into the atomic-scale mechanisms associated with these structural superiorities. The full SIHCs devices demonstrate a high energy density of 198.3 Wh kg<sup>−1</sup>, along with a long-term cycling lifespan of 8000 cycles. This study offers valuable strategies into the intricate design and exploration of amorphous electrodes, contributing to the advancement of next-generation electrochemical energy devices.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202408923","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium ion hybrid capacitors (SIHCs) address the high power and energy requirements in energy storage devices but face significant challenges arising from the slow kinetics and cycling instability of the anode side. Introducing atomic disorder and employing structural engineering in anode materials proves to be effective strategies for achieving rapid charge storage. Here, it is demonstrated that N-doped MXene encapsulated amorphous vanadium oxide hollow spheres (VOx@N-MXene HSs) offer multidirectional open pathways and sufficient vacancies, enabling reversible and fast Na+ insertion/extraction. Machine learning potentials, coupled with molecular simulation techniques, confirm the presence of more abundant pores within the amorphous vanadium oxide (VOx) structure. The simulation of the charging/discharging process elucidates the authentic reaction path and structural evolutions of the VOx@N-MXene HSs, providing sufficient insight into the atomic-scale mechanisms associated with these structural superiorities. The full SIHCs devices demonstrate a high energy density of 198.3 Wh kg−1, along with a long-term cycling lifespan of 8000 cycles. This study offers valuable strategies into the intricate design and exploration of amorphous electrodes, contributing to the advancement of next-generation electrochemical energy devices.

Abstract Image

用于高性能钠离子混合电容器的非晶化工程空心氧化钒/二甲苯纳米杂化物中的超快钠离子存储
钠离子混合电容器(SIHC)可满足储能设备的高功率和高能量要求,但却面临着阳极侧缓慢的动力学和循环不稳定性所带来的巨大挑战。事实证明,在阳极材料中引入原子紊乱和采用结构工程是实现快速电荷存储的有效策略。本文证明,掺杂 N 的 MXene 封装无定形氧化钒空心球(VOx@N-MXene HSs)具有多向开放通道和足够的空位,可实现可逆和快速的 Na+ 插入/抽出。机器学习电位与分子模拟技术相结合,证实了无定形氧化钒(VOx)结构中存在更丰富的孔隙。对充电/放电过程的模拟阐明了 VOx@N-MXene HSs 的真实反应路径和结构演变,为了解与这些结构优越性相关的原子尺度机制提供了充分的视角。完整的 SIHCs 器件具有 198.3 Wh kg-1 的高能量密度和 8000 次的长期循环寿命。这项研究为非晶电极的复杂设计和探索提供了宝贵的策略,有助于推动下一代电化学能源设备的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信