Performance Prediction of High-Entropy Perovskites La0.8Sr0.2MnxCoyFezO3 with Automated High-Throughput Characterization of Combinatorial Libraries and Machine Learning

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Carlota Bozal-Ginesta, Juande Sirvent, Giulio Cordaro, Sarah Fearn, Sergio Pablo-García, Francesco Chiabrera, Changhyeok Choi, Lisa Laa, Marc Núñez, Andrea Cavallaro, Fjorelo Buzi, Ainara Aguadero, Guilhem Dezanneau, John Kilner, Alex Morata, Federico Baiutti, Alán Aspuru-Guzik, Albert Tarancón
{"title":"Performance Prediction of High-Entropy Perovskites La0.8Sr0.2MnxCoyFezO3 with Automated High-Throughput Characterization of Combinatorial Libraries and Machine Learning","authors":"Carlota Bozal-Ginesta, Juande Sirvent, Giulio Cordaro, Sarah Fearn, Sergio Pablo-García, Francesco Chiabrera, Changhyeok Choi, Lisa Laa, Marc Núñez, Andrea Cavallaro, Fjorelo Buzi, Ainara Aguadero, Guilhem Dezanneau, John Kilner, Alex Morata, Federico Baiutti, Alán Aspuru-Guzik, Albert Tarancón","doi":"10.1002/adma.202407372","DOIUrl":null,"url":null,"abstract":"Perovskite oxides form a large family of materials with applications across various fields, owing to their structural and chemical flexibility. Efficient exploration of this extensive compositional space is now achievable through automated high-throughput experimentation combined with machine learning. In this study, we investigate the composition–structure–performance relationships of high-entropy La<sub>0.8</sub>Sr<sub>0.2</sub>Mn<sub>x</sub>Co<sub>y</sub>Fe<sub>z</sub>O<sub>3±𝞭</sub> perovskite oxides (0 &lt; x, y, z &lt;1; x+y+z≈1) for application as oxygen electrodes in Solid Oxide Cells. Following the deposition of a continuous compositional map using thin-film combinatorial pulsed laser deposition, compositional, structural, and performance properties are characterized using six different techniques with mapping capabilities. Random forests effectively model electrochemical performance, consistently identifying Fe-rich oxides as optimal compounds with the lowest area-specific resistance values for oxygen electrodes at 700 °C. Additionally, the models identify a statistical correlation between oxygen sublattice distortion—derived from spectral analysis of Raman-active modes—and enhanced performance.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202407372","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite oxides form a large family of materials with applications across various fields, owing to their structural and chemical flexibility. Efficient exploration of this extensive compositional space is now achievable through automated high-throughput experimentation combined with machine learning. In this study, we investigate the composition–structure–performance relationships of high-entropy La0.8Sr0.2MnxCoyFezO3±𝞭 perovskite oxides (0 < x, y, z <1; x+y+z≈1) for application as oxygen electrodes in Solid Oxide Cells. Following the deposition of a continuous compositional map using thin-film combinatorial pulsed laser deposition, compositional, structural, and performance properties are characterized using six different techniques with mapping capabilities. Random forests effectively model electrochemical performance, consistently identifying Fe-rich oxides as optimal compounds with the lowest area-specific resistance values for oxygen electrodes at 700 °C. Additionally, the models identify a statistical correlation between oxygen sublattice distortion—derived from spectral analysis of Raman-active modes—and enhanced performance.

Abstract Image

利用组合库的自动化高通量表征和机器学习预测高熵包光体 La0.8Sr0.2MnxCoyFezO3 的性能
由于其结构和化学性质的灵活性,包晶氧化物形成了一个庞大的材料家族,应用于各个领域。现在,通过自动化高通量实验与机器学习相结合的方法,可以对这一广泛的成分空间进行有效探索。在本研究中,我们研究了高熵 La0.8Sr0.2MnxCoyFezO3±𝞭 包晶石氧化物(0 < x, y, z <1;x+y+z≈1)的组成-结构-性能关系,以用作固体氧化物电池中的氧电极。在使用薄膜组合脉冲激光沉积连续成分图之后,使用六种不同的制图技术对成分、结构和性能特性进行了表征。随机森林有效地建立了电化学性能模型,始终将富含铁的氧化物确定为最佳化合物,在 700 °C 下氧电极的特定区域电阻值最低。此外,这些模型还确定了从拉曼活性模式光谱分析中得出的氧亚晶格畸变与增强性能之间的统计相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信