Hyeon-Ji Shin, Jun-Tae Kim, Daseul Han, Hyung-Seok Kim, Kyung Yoon Chung, Junyoung Mun, Jongsoon Kim, Kyung-Wan Nam, Hun-Gi Jung
{"title":"2D Graphene-Like Carbon Coated Solid Electrolyte for Reducing Inhomogeneous Reactions of All-Solid-State Batteries","authors":"Hyeon-Ji Shin, Jun-Tae Kim, Daseul Han, Hyung-Seok Kim, Kyung Yoon Chung, Junyoung Mun, Jongsoon Kim, Kyung-Wan Nam, Hun-Gi Jung","doi":"10.1002/aenm.202403247","DOIUrl":null,"url":null,"abstract":"Recent studies have identified an imbalance between the electronic and ionic conductivities as the drivers of inhomogeneous reactions in composite cathodes, which cause the rapid degradation of all-solid-state battery (ASSB). To mitigate localized overcharge and utilize isolated active materials, the study proposes the coating of an argyrodite-type Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte (SE) with graphene-like carbon (GLC@LPSCl), a 2D conductive material, to offer a continuous three-dimensionally connected electron pathway within the composite cathode to facilitate ion mobility and promote homogeneous reactions. Despite reducing the content of the conducting agent, it is observed that the GLC@LPSCl cell exhibits high initial Coulombic efficiency and discharge capacity, reducing the inhomogeneous reactivity after 200 cycles compared with when ordinary conductive agents are deployed. Additionally, the presence of GLC@LPSCI surface suppresses the interfacial reaction between SE–cathode material, thus imparting the cell with excellent capacity retention (≈90%) after 200 cycles. Furthermore, the cell performance improves even after a fourfold increase in the cathode loading amount, demonstrating the criticality of a well-developed continuous electron pathway to cell performance and highlighting the key role of ensuring a balance between the electron and ion conductivities in the development of high-energy-density and high-power ASSBs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403247","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies have identified an imbalance between the electronic and ionic conductivities as the drivers of inhomogeneous reactions in composite cathodes, which cause the rapid degradation of all-solid-state battery (ASSB). To mitigate localized overcharge and utilize isolated active materials, the study proposes the coating of an argyrodite-type Li6PS5Cl solid electrolyte (SE) with graphene-like carbon (GLC@LPSCl), a 2D conductive material, to offer a continuous three-dimensionally connected electron pathway within the composite cathode to facilitate ion mobility and promote homogeneous reactions. Despite reducing the content of the conducting agent, it is observed that the GLC@LPSCl cell exhibits high initial Coulombic efficiency and discharge capacity, reducing the inhomogeneous reactivity after 200 cycles compared with when ordinary conductive agents are deployed. Additionally, the presence of GLC@LPSCI surface suppresses the interfacial reaction between SE–cathode material, thus imparting the cell with excellent capacity retention (≈90%) after 200 cycles. Furthermore, the cell performance improves even after a fourfold increase in the cathode loading amount, demonstrating the criticality of a well-developed continuous electron pathway to cell performance and highlighting the key role of ensuring a balance between the electron and ion conductivities in the development of high-energy-density and high-power ASSBs.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.