Zhao Wang, Dongbin Wang, Kun Xie, Pei Shi, Ye Shen, Long Lin
{"title":"Theoretical Calculation of Dissolved Gas in Transformer Oil Using the Gas Sensitive Properties of Sc- and Ti-Modified ZrS2","authors":"Zhao Wang, Dongbin Wang, Kun Xie, Pei Shi, Ye Shen, Long Lin","doi":"10.1021/acs.langmuir.4c03424","DOIUrl":null,"url":null,"abstract":"To guarantee the secure functioning of the complete power system and minimize the risks associated with oil-filled transformers during their operation, it is greatly important to carry out gas sensing studies of dissolved gases in transformer research. Through the utilization of first-principles density functional theory calculations, the adsorption energy, electronic characteristics, and recuperation duration of ZrS<sub>2</sub> modified with Sc and Ti were examined. The results show that compared to those of the initial ZrS<sub>2</sub> material, the doping of TM atoms Sc and Ti significantly improved the adsorption properties of the material, and the adsorption of CO and C<sub>2</sub>H<sub>4</sub> showed chemisorption. The adsorption capacity for gases decrease in the following order: C<sub>2</sub>H<sub>4</sub> > CO > H<sub>2</sub>. The calculated recovery times indicate that Sc-ZrS<sub>2</sub> and Ti-ZrS<sub>2</sub> were ideal carbon monoxide sensing materials under the specific conditions. The results of this work can establish a fundamental rationale for the use of ZrS<sub>2</sub> in sensing the conditions of oil-immersed transformers.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03424","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To guarantee the secure functioning of the complete power system and minimize the risks associated with oil-filled transformers during their operation, it is greatly important to carry out gas sensing studies of dissolved gases in transformer research. Through the utilization of first-principles density functional theory calculations, the adsorption energy, electronic characteristics, and recuperation duration of ZrS2 modified with Sc and Ti were examined. The results show that compared to those of the initial ZrS2 material, the doping of TM atoms Sc and Ti significantly improved the adsorption properties of the material, and the adsorption of CO and C2H4 showed chemisorption. The adsorption capacity for gases decrease in the following order: C2H4 > CO > H2. The calculated recovery times indicate that Sc-ZrS2 and Ti-ZrS2 were ideal carbon monoxide sensing materials under the specific conditions. The results of this work can establish a fundamental rationale for the use of ZrS2 in sensing the conditions of oil-immersed transformers.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).