Ambient Sunlight Driven Photothermal Green Syngas Production at 100 m3 Scale by the Dynamic Structural Reconstruction of Iron Oxides with 38.7% Efficiency

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qixuan Wu, Jialin Wang, Dachao Yuan, Yachuan Wang, Yaguang Li, Yunna Guo, Zhibo Zhang, Xingyuan San, Liqiang Zhang, Jinhua Ye
{"title":"Ambient Sunlight Driven Photothermal Green Syngas Production at 100 m3 Scale by the Dynamic Structural Reconstruction of Iron Oxides with 38.7% Efficiency","authors":"Qixuan Wu, Jialin Wang, Dachao Yuan, Yachuan Wang, Yaguang Li, Yunna Guo, Zhibo Zhang, Xingyuan San, Liqiang Zhang, Jinhua Ye","doi":"10.1002/adfm.202412562","DOIUrl":null,"url":null,"abstract":"Ambient sunlight-driven photothermal green syngas production via reverse water-gas shift (RWGS) reaction is important for carbon neutrality, which lacks efficient and inexpensive catalysts at low temperatures. This studydemonstrates that the scalable Fe<sub>3</sub>O<sub>4</sub> supported with K atoms modified Ag nanoparticles (AgK/Fe<sub>3</sub>O<sub>4</sub>) exhibits a RWGS CO production rate of 1089 mmol g<sup>−1</sup> h<sup>−1</sup> at 300 °C and 100% CO selectivity through dynamic structural reconstruction, surpassing all reported platinum-based catalysts. In situ characterization and theoretical simulation indicate that the AgK nanoparticles activate H<sub>2</sub> to reduce Fe<sub>3</sub>O<sub>4</sub> as metallic Fe. Subsequently, the metallic Fe spontaneously reacts with CO<sub>2</sub> to form CO and Fe<sub>3</sub>O<sub>4</sub>, thereby facilitating low-temperature RWGS. Owing to its superior low-temperature performance, AgK/Fe<sub>3</sub>O<sub>4</sub> equipped with a homemade photothermal device achieves one sun-driven photothermal RWGS with a CO production rate of 1925 mmol g<sup>−1</sup> h<sup>−1</sup> and a 38.7% solar to enthalpy energy conversion efficiency. Furthermore, the enlarged outdoor demonstration yields 100.6 m<sup>3</sup>day<sup>−1</sup> of green syngas with an H<sub>2</sub>/CO ratio of 3. This work paves the way for designing efficient platinum-free CO<sub>2</sub> hydrogenation catalysts and introduces a new approach for sunlight-driven scalable green syngas production.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202412562","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ambient sunlight-driven photothermal green syngas production via reverse water-gas shift (RWGS) reaction is important for carbon neutrality, which lacks efficient and inexpensive catalysts at low temperatures. This studydemonstrates that the scalable Fe3O4 supported with K atoms modified Ag nanoparticles (AgK/Fe3O4) exhibits a RWGS CO production rate of 1089 mmol g−1 h−1 at 300 °C and 100% CO selectivity through dynamic structural reconstruction, surpassing all reported platinum-based catalysts. In situ characterization and theoretical simulation indicate that the AgK nanoparticles activate H2 to reduce Fe3O4 as metallic Fe. Subsequently, the metallic Fe spontaneously reacts with CO2 to form CO and Fe3O4, thereby facilitating low-temperature RWGS. Owing to its superior low-temperature performance, AgK/Fe3O4 equipped with a homemade photothermal device achieves one sun-driven photothermal RWGS with a CO production rate of 1925 mmol g−1 h−1 and a 38.7% solar to enthalpy energy conversion efficiency. Furthermore, the enlarged outdoor demonstration yields 100.6 m3day−1 of green syngas with an H2/CO ratio of 3. This work paves the way for designing efficient platinum-free CO2 hydrogenation catalysts and introduces a new approach for sunlight-driven scalable green syngas production.

Abstract Image

通过动态重构氧化铁结构在 100 立方米规模上以 38.7% 的效率生产环境阳光驱动的光热绿色合成气
通过反向水-气变换(RWGS)反应进行环境阳光驱动的光热绿色合成气生产对实现碳中和非常重要,但在低温条件下缺乏高效廉价的催化剂。本研究证明,用 K 原子修饰的 Ag 纳米颗粒(AgK/Fe3O4)支撑的可扩展 Fe3O4 通过动态结构重构,在 300 °C 时的 RWGS CO 生产率达到 1089 mmol g-1 h-1,CO 选择性达到 100%,超过了所有已报道的铂基催化剂。原位表征和理论模拟表明,AgK 纳米颗粒激活 H2 将 Fe3O4 还原为金属 Fe。随后,金属 Fe 自发地与 CO2 反应生成 CO 和 Fe3O4,从而促进了低温 RWGS 的产生。由于其优越的低温性能,配备自制光热装置的 AgK/Fe3O4 实现了太阳驱动的光热 RWGS,CO 生成率达到 1925 mmol g-1 h-1,太阳能与焓能的转换效率为 38.7%。这项工作为设计高效的无铂二氧化碳加氢催化剂铺平了道路,并为阳光驱动的可扩展绿色合成气生产引入了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信