An Antibiofouling Electrochemical Sensor Consisting of Amphiphilic Copolymer on CNT-COOH Electrodes for Point-of-Care Monitoring of Propofol Blood Concentration in Surgical Patients
{"title":"An Antibiofouling Electrochemical Sensor Consisting of Amphiphilic Copolymer on CNT-COOH Electrodes for Point-of-Care Monitoring of Propofol Blood Concentration in Surgical Patients","authors":"Shan Wang, Chunguang Kuai, Qianwen He, Feng He, Bingrui Xiong, Li Li, Xue Ke, Yuzheng Guo, Mian Peng","doi":"10.1016/j.snb.2024.136890","DOIUrl":null,"url":null,"abstract":"The monitoring of propofol (PPF) blood concentration is vital for the safety of intravenous anesthesia. Electrochemical sensors represent a powerful tool for the detection of PPF. Our previous research has demonstrated that CNT-COOH electrodes exhibit advantages in resisting electrochemical fouling from PPF oxidation products. Nevertheless, biofouling remains a critical challenge hindering the clinical transformation of PPF electrochemical sensors. To address this issue, we employed in-situ electrodeposition to deposit zwitterionic sulfobetaine methacrylate (SBMA) and overoxidation polydopamine (OPDA) onto CNT-COOH screen-printed electrodes (SPEs) and proposed an innovative CNT-COOH/OPDA-SBMA (CNT-COOH/OPS) amphiphilic antifouling biosensor. This amphiphilic electrode, featuring both hydrophilic and hydrophobic properties, demonstrated excellent antifouling performance through electrochemical characterization in ex-vivo blood assays, coupled with commendable sensitivity, stability, and selectivity. CNT-COOH/OPS SPEs were also applied in point-of-care monitoring of the PPF blood concentrations in animals and clinical surgical patients and exhibited good accuracy and linearity (Ipa=0.0084c+0.4458, R<sup>2</sup>=0.995) with a limit of detection of 2.948<!-- --> <!-- -->μM. Further, the electrodes demonstrated a high recovery and the blood concentrations determined by electrochemical detection had robust negative correlation with the depth of anesthesia. Therefore, CNT-COOH/OPS SPEs hold promise as a significant tool in point-of-care monitoring of PPF, offering patients safer and more personalized medical care.","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.snb.2024.136890","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The monitoring of propofol (PPF) blood concentration is vital for the safety of intravenous anesthesia. Electrochemical sensors represent a powerful tool for the detection of PPF. Our previous research has demonstrated that CNT-COOH electrodes exhibit advantages in resisting electrochemical fouling from PPF oxidation products. Nevertheless, biofouling remains a critical challenge hindering the clinical transformation of PPF electrochemical sensors. To address this issue, we employed in-situ electrodeposition to deposit zwitterionic sulfobetaine methacrylate (SBMA) and overoxidation polydopamine (OPDA) onto CNT-COOH screen-printed electrodes (SPEs) and proposed an innovative CNT-COOH/OPDA-SBMA (CNT-COOH/OPS) amphiphilic antifouling biosensor. This amphiphilic electrode, featuring both hydrophilic and hydrophobic properties, demonstrated excellent antifouling performance through electrochemical characterization in ex-vivo blood assays, coupled with commendable sensitivity, stability, and selectivity. CNT-COOH/OPS SPEs were also applied in point-of-care monitoring of the PPF blood concentrations in animals and clinical surgical patients and exhibited good accuracy and linearity (Ipa=0.0084c+0.4458, R2=0.995) with a limit of detection of 2.948 μM. Further, the electrodes demonstrated a high recovery and the blood concentrations determined by electrochemical detection had robust negative correlation with the depth of anesthesia. Therefore, CNT-COOH/OPS SPEs hold promise as a significant tool in point-of-care monitoring of PPF, offering patients safer and more personalized medical care.
期刊介绍:
Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.