{"title":"Molecule-like synthesis of ligand-protected metal nanoclusters","authors":"Qiaofeng Yao, Moshuqi Zhu, Zhucheng Yang, Xiaorong Song, Xun Yuan, Zhipu Zhang, Wenping Hu, Jianping Xie","doi":"10.1038/s41578-024-00741-7","DOIUrl":null,"url":null,"abstract":"<p>Ligand-protected metal nanoclusters (NCs) are ultrasmall particles (<3 nm) that represent the molecular state of metal materials. Owing to their molecule-like structure — particularly their atomic precision and protein-like hierarchy — metal NCs feature numerous useful molecule-like properties, including discrete energy levels, strong luminescence, intrinsic magnetism and programmable catalytic activity. In this Review, by regarding metal NCs as metallic analogues of organic molecules, we summarize methodological and mechanistic advances in their precise synthesis at the molecular and atomic levels. We first decipher cluster structure based on a protein-like hierarchical scheme and discuss synthetic strategies that realize molecular monodispersity in these clusters. We resolve formation mechanisms of metal NCs at the molecular level, aiming to establish step-by-step reaction maps reminiscent of total synthesis routes of organic molecules. We then examine approaches to customize the composition and morphology of the metal core, metal–ligand interface and ligand shell at the atom level. This Review concludes with our perspectives on the future development of atomic precision chemistry in both metal NCs and other inorganic nanomaterials.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"13 1","pages":""},"PeriodicalIF":79.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41578-024-00741-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ligand-protected metal nanoclusters (NCs) are ultrasmall particles (<3 nm) that represent the molecular state of metal materials. Owing to their molecule-like structure — particularly their atomic precision and protein-like hierarchy — metal NCs feature numerous useful molecule-like properties, including discrete energy levels, strong luminescence, intrinsic magnetism and programmable catalytic activity. In this Review, by regarding metal NCs as metallic analogues of organic molecules, we summarize methodological and mechanistic advances in their precise synthesis at the molecular and atomic levels. We first decipher cluster structure based on a protein-like hierarchical scheme and discuss synthetic strategies that realize molecular monodispersity in these clusters. We resolve formation mechanisms of metal NCs at the molecular level, aiming to establish step-by-step reaction maps reminiscent of total synthesis routes of organic molecules. We then examine approaches to customize the composition and morphology of the metal core, metal–ligand interface and ligand shell at the atom level. This Review concludes with our perspectives on the future development of atomic precision chemistry in both metal NCs and other inorganic nanomaterials.
期刊介绍:
Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments.
Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.